Characterizing absolutely irreducible integer-valued polynomials over discrete valuation domains

dc.contributor.authorHiebler, Moritz
dc.contributor.authorNakato, Sarah
dc.contributor.authorRoswitha,Rissner
dc.date.accessioned2023-08-14T07:52:09Z
dc.date.available2023-08-14T07:52:09Z
dc.date.issued2023-08-12
dc.description.abstractRings of integer-valued polynomials are known to be atomic, non-factorial rings furnishing examples for both irreducible elements for which all powers factor uniquely (absolutely irreducibles) and irreducible elements where some power has a factorization different from the trivial one. In this paper, we study irreducible polynomials F ∈ Int(R) where R is a discrete valuation domain with finite residue field and show that it is possible to explicitly determine a number S ∈ N that reduces the absolute irreducibility of F to the unique factorization of F S . To this end, we establish a connection between the factors of powers of F and the kernel of a certain linear map that we associate to F . This connection yields a characterization of absolute irreducibility in terms of this so-called fixed divisor kernel. Given a non-trivial element v of this kernel, we explicitly construct non-trivial factorizations of F k , provided that k ≥ L, where L depends on F as well as the choice of v. We further show that this bound cannot be improved in general. Additionally, we provide other (larger) lower bounds for k, one of which only depends on the valuation of the denominator of F and the size of the residue class field of R.
dc.description.sponsorshipKabale University
dc.identifier.urihttp://hdl.handle.net/20.500.12493/1339
dc.language.isoen
dc.publisherJournal of Algebra 633 (2023) 696–72
dc.titleCharacterizing absolutely irreducible integer-valued polynomials over discrete valuation domains
dc.typeArticle

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Publication-SarahNakato-1.pdf
Size:
507.07 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: