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Rings of integer-valued polynomials are known to be atomic, 
non-factorial rings furnishing examples for both irreducible 
elements for which all powers factor uniquely (absolutely 
irreducibles) and irreducible elements where some power has 
a factorization different from the trivial one.
In this paper, we study irreducible polynomials F ∈ Int(R)
where R is a discrete valuation domain with finite residue field 
and show that it is possible to explicitly determine a number 
S ∈ N that reduces the absolute irreducibility of F to the 
unique factorization of FS .
To this end, we establish a connection between the factors of 
powers of F and the kernel of a certain linear map that we 
associate to F . This connection yields a characterization of 
absolute irreducibility in terms of this so-called fixed divisor 
kernel. Given a non-trivial element v of this kernel, we 
explicitly construct non-trivial factorizations of F k, provided 
that k ≥ L, where L depends on F as well as the choice of 
v. We further show that this bound cannot be improved in 
general. Additionally, we provide other (larger) lower bounds 
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for k, one of which only depends on the valuation of the 
denominator of F and the size of the residue class field of R.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

In atomic domains which allow non-unique factorizations, powers of irreducible ele-
ments c may or may not have a factorization other than the trivial one, that is, c · · · c. 
Those irreducible elements all of whose powers (essentially) factor uniquely are the so-
called absolutely irreducible elements, a notion that “bridges” the gap between prime and 
irreducible elements. A thorough understanding of the factorization behavior of such a 
ring necessarily requires comprehension of its irreducible elements and the factorization 
behavior of their powers.

Rings of integer-valued polynomials,

Int(D) = {F ∈ K[x] | F (D) ⊆ D}

where D is a domain with quotient field K, are known to provide examples for both 
absolutely irreducible elements and irreducible elements that are not absolutely irre-
ducible, see Angermüller’s recent publication [2] and, for example, Nakato’s article [24]
for explicit constructions in Int(Z). Note that in the literature, absolutely irreducible 
elements have also been called completely irreducible [20] and strong atoms [4,11].

In this paper, we study factorizations of powers of (non-constant) irreducible elements 
F ∈ Int(R) where (R, pR) is a discrete valuation domain with finite residue field. In order 
to prove that F is not absolutely irreducible, it suffices to allege a non-trivial factorization 
of some power F k. Proving absolute irreducibilty, on the other hand, requires to get 
a handle on the (unique) factorizations of all exponents k for which the powers F k

potentially factor non-uniquely. We establish lower bounds S such that whenever F is 
not absolutely irreducible, then F k factors non-uniquely for k ≥ S. In other words, to 
determine whether F is absolutely irreducible or not, it suffices to check the factorization 
behavior of FS , that is, we only need to treat one power of F instead of infinitely many. 
Our approach yields a full characterization of all absolutely irreducible polynomials in 
Int(R) in terms of the kernel of a certain linear map, which we call the fixed divisor 
kernel.

The focus of factorization theoretic studies has layed on Krull monoids to a large 
extent so far. For integral domains, Krull domains are exactly those domains whose 
multiplicative monoid is Krull.

For a discrete valuation domain R with finite residue field, the ring Int(R) is not 
Krull but Prüfer, cf. [10,21]. Reinhart [26], however, showed that they are monadically 
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Krull, that is, he proved that for each F ∈ Int(D) (for factorial domains D), the monadic 
submonoid generated by F ,

�F � = {G ∈ Int(D) | G divides Fn for some n ∈ N},

is Krull and Frisch [15] extended this result to Krull domains. Note that an irreducible 
polynomial F ∈ Int(D) is absolutely irreducible if and only if �F � is factorial.

Factorization-theoretic properties of rings of integer-valued polynomials have been 
studied over the last decades. The papers of Anderson, Cahen, Chapman and Smith [1], 
Cahen and Chabert [7] and Chapman and McClain [12] can be considered as the starting 
point of this line of research and have encouraged further research activity in the area, 
e.g., [3,13,14,17,25].

Recently, there has been perceptible progress in the study of absolutely irreducible 
elements in rings of integer-valued polynomials. In addition to the already mentioned 
references, Rissner and Windisch [27] have confirmed the decade-long open conjecture 
that the binomial polynomials 

(
x
n

)
are absolutely irreducible for all n ∈ N. The special 

case where n is a prime number has been verified before by McClain [23] and also 
follows from Frisch and Nakato’s graph-theoretic criterion [16]. The latter provides a 
characterization of absolutely irreducible integer-valued polynomials over principal ideal 
domains whose denominators are square-free. One of the consequences of this criterion 
is that for such polynomials F one can determine absolute irreducibility by checking 
the unique factorizations of F 3. For integer-valued polynomials whose denominators 
contain square factors, this criterion is known to be a sufficient, but not a necessary 
condition for absolute irreducibility. Adding to an overall understanding of absolutely 
irreducible integer-valued polynomials is the characterization of the class of completely 
split absolutely irreducible elements of Int(R) where R is a discrete valuation domain R
with finite residue field by Frisch, Nakato, and Rissner [18].

The last two references form the motivational starting point for the paper at hand. 
We fully characterize the absolutely irreducible elements in Int(R) where R is a discrete 
valuation domain with finite residue field and we determine different (explicit) exponents 
k such that F k factors uniquely if and only if F is absolutely irreducible. This is not 
only interesting from a theoretical point of view but also provide means to approach the 
subject from a computational perspective.

Note that while the bound resulting from the graph-theoretic criterion [16] cannot be 
improved for integer-valued polynomials over principal ideal domains, it is not tight in the 
case when the underlying ring is a discrete valuation domain R with finite residue field. 
Indeed, in the case of a single prime element p in the denominator, it even suffices to check 
the factorizations of F 2 to determine absolute irreducibility. That is, if F = f

p ∈ Int(R)
is irreducible but not absolutely irreducible, then, by [16, Theorem 1 and 3], there exists 
a non-constant irreducible divisor h of f in R[x] such that for all roots a of h modulo p, 
we have v(f(a)) > 1. Therefore, if f = gh with g ∈ R[x], we obtain that
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F 2 = g2h

p2 · h

is a factorization (not necessarily into irreducibles) of F 2 different from F · F .

2. Results

As Int(R) is trivial for discrete valuation domains R with infinite residue field, we 
restrict our attention to those with finite residue field, cf. [8, Corollary I.3.7].

Given a (non-constant) irreducible F ∈ Int(R), we determine an exponent S ∈ N such 
that F is absolutely irreducible if and only if FS factors uniquely. We show that integer-
valued factors of powers of F are encoded as non-trivial elements of what we call the 
fixed divisor kernel. This allows us not only to determine lower bounds for S (non-unique 
factorizations trivially transfer to higher powers), but also yields a neat characterization 
of absolute irreducibility in terms of this special kernel.

As usual in factorization theory, we are only interested in essentially different factoriza-
tions, which is why we will not distinguish between associated elements (cf. Remark 3.9). 
Hence, it suffices to consider polynomials F ∈ Int(R) which are of the form F = f

pn

with fixed divisor d(f) = pn (Definition 3.5) where f =
∏

g∈P gmg ∈ R[x] with irre-
ducible divisor set P (Definition 3.4) and the vector of the corresponding multiplicities 
m = (mg)g∈P ∈ NP .

An integer-valued factor of F j always has to be of the form H =
∏

g∈P gkg

pr where 
r ≤ jn (Fact 3.10). Roughly speaking, whether or not F j has a non-trivial factorization 
is asking whether it is possible to “suitably re-distribute” the jmg respective copies of 
the polynomials g. This, in turn, heavily depends on the values of (v(g(a)))g∈P for all 
a ∈ R.

However, the relevant information about all these valuation vectors can be encoded in 
the kernel of a certain linear map, the fixed divisor kernel fd-ker(f) of f (Definition 4.1).

Indeed, in Section 4, we show how to use a non-trivial element v ∈ fd-ker(f) to 
explicitly engineer a non-trivial factorization of F k for k ≥ L where L is a bound de-
pending on n, v, and the vector of multiplicities m, leading to our first main result. 
Regarding notation, v+ and v− are the positive and negative part of v, respectively, and ∣∣⌈x⌉∣∣∞ = �maxg |xg|�.

Theorem 1. Let (R, pR) be a discrete valuation domain with valuation v and finite residue 
field. Further, let f =

∏
g∈P gmg ∈ R[x] be a primitive, non-constant polynomial with 

irreducible divisor set P and m = (mg)g∈P ∈ NP the vector of the corresponding multi-
plicities and assume that v(d(f)) = n ∈ N.

If fd-ker(f) �= 0, then F = f
pn is not absolutely irreducible. In fact, if F is irreducible 

and 0 �= v ∈ fd-ker(f) ∩ ZP , then F j factors non-uniquely for all j ∈ N with j ≥
(n + 1) 

(∣∣⌈v+ ⌉∣∣ +
∣∣⌈v− ⌉∣∣ ).
m ∞ m ∞
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We also show that the reverse implication holds, that is, whenever the fixed divisor 
kernel of f is trivial, then F is absolutely irreducible (where we need to impose a condition 
on f which is trivially satisfied whenever F is irreducible). This yields our next main 
result, a characterization of absolutely irreducible polynomials in Int(R) in terms of the 
fixed divisor kernel.

Theorem 2. Let (R, pR) be a discrete valuation domain with valuation v and finite residue 
field. Further, let f ∈ R[x] be a primitive, non-constant polynomial with v(d(f)) = n ∈ N

and assume that f is not a proper power of another polynomial in R[x].
Then f

pn is absolutely irreducible if and only if fd-ker(f) = 0.

In the remaining paper, we have a closer look at the bound given in Theorem 1. In 
Section 5, we are able to give an upper bound for

min
{
‖v‖∞

∣∣ 0 �= v ∈ fd-ker(f) ∩ ZP}
using a tailored version of Siegel’s lemma (Lemma 5.2). For this purpose, we introduce 
the notion of a reduced fdp matrix A ∈ QW×P which is a full row-rank matrix satisfying 
ker(A) = fd-ker(f), where W is a certain finite set of so-called fixed divisor witnesses
of f (Definitions 4.1 and 5.1). This further allows us to determine other exponents S, 
one of which depends only on n and the size of the finite residue field of R such that 
an irreducible polynomial F = f

pn ∈ Int(R) is absolutely irreducible if and only if FS

factors uniquely.

Theorem 3. Let (R, pR) be a discrete valuation domain with valuation v and let q =
|R/pR| be the cardinality of the finite residue field of R. Further, let f ∈ R[x] be a 
non-constant, primitive polynomial with irreducible divisor set P and (mg)g∈P ∈ NP the 
vector of the corresponding multiplicities, that is, f =

∏
g∈P gmg . Let v(d(f)) = n ∈ N

and A ∈ QW×P (with W ⊆ W(f)) be a reduced fdp matrix of f containing u rows with 
only one non-zero entry.

Assume that F is irreducible. Then the following assertions are equivalent:

(i) F j factors uniquely for all j ∈ N, that is, F is absolutely irreducible.
(ii) FS factors uniquely for S = 2(n + 1)nq

⌈
n
2
⌉
.

(iii) FS factors uniquely for S = 2(n + 1)nrank(A)−u.

Finally, in Section 6, we discuss the tightness of the given bounds. We show that the 
bound in Theorem 1 cannot be improved in general. Indeed, for any n ≥ 2, there exists 
a discrete valuation domain (R, pR) with finite residue field and an irreducible, integer-
valued polynomial F = f

pn ∈ Int(R) such that the minimal S for which FS factors 
non-uniquely is exactly the bound given in Theorem 1, minimized over all feasible v. We 
are not only able to determine S explicitly, but also show that it can be made larger 
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than any predefined constant. We point out that, given the numbers in Theorem 3, it 
follows that the size of the residue field has to grow with the size of S.

Theorem 4. Let r, n ≥ 2 be integers.
Then there exists a discrete valuation domain (R, pR) with finite residue field and a 

polynomial F = f
pn ∈ Int(R) which is irreducible, but not absolutely irreducible in Int(R)

(both R and F depending on r) such that the minimal exponent S for which FS does not 
factor uniquely satisfies

(i) S = (n +1) 
(
(n− 1)r−1 + (n− 1)r−2) where r is the rank of a (reduced) fdp matrix 

of f and
(ii) S = (n + 1) min

{
‖v+‖∞ + ‖v−‖∞

∣∣ 0 �= v ∈ fd-ker(f) ∩ ZP}.
In particular, it follows that the lower bound given in Theorem 1 cannot be improved in 
general.

3. Preliminaries

3.1. Factorizations

We define the factorization terms that we need in this paper, and refer to the text-
book of Geroldinger and Halter-Koch [19] for a systematic introduction to non-unique 
factorizations.

Definition 3.1. Let R be a commutative ring with identity.

(i) We say that r ∈ R is irreducible in R if it is a non-zero non-unit and it cannot be 
written as the product of two non-units of R.

(ii) A factorization of r ∈ R is an expression of r as a product of irreducibles, that is,

r = a1 · · · an

where n ≥ 1 and ai is irreducible in R for 1 ≤ i ≤ n.
(iii) We say that r, s ∈ R are associated in R if there exists a unit u ∈ R such that 

r = us. We denote this by r ∼ s.
(iv) Two factorizations of the same element,

r = a1 · · · an = b1 · · · bm, (3.1)

are called essentially the same if n = m and, after a suitable re-indexing, aj ∼ bj
for 1 ≤ j ≤ m. Otherwise, the factorizations in (3.1) are called essentially different.
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Definition 3.2. Let R be a commutative ring with identity. An irreducible element r ∈ R

is called absolutely irreducible if for all natural numbers n, every factorization of rn is 
essentially the same as rn = r · · · r.

Remark 3.3. A straight-forward verification shows that an irreducible element r is abso-
lutely irreducible if and only if for every n ∈ N and every factorization rn = c · d into 
the product of (not necessarily irreducible) elements c and d ∈ R, it follows that c ∼ rk

and d ∼ r� for some k, � ∈ N0.

3.2. (Integer-valued) polynomials

We shortly summarize definitions, notation and facts surrounding (integer-valued) 
polynomials over a discrete valuation domain (R, pR) which we need throughout this 
paper. For a deeper study of the theory of integer-valued polynomials, we refer to the 
textbook of Cahen and Chabert [8] and their recent survey [9].

Definition 3.4. Let f ∈ R[x] be a polynomial.

(i) We call f primitive if the coefficients of f generate R as ideal.
(ii) We call a representative set P of the associate classes of the irreducible divisors of 

f an irreducible divisor set of f .

Definition 3.5. Let K be the quotient field of R. The ring of integer-valued polynomials
on R is

Int(R) = {F ∈ K[x] | F (R) ⊆ R} .

For F ∈ Int(R), the fixed divisor of F is defined as

d(F ) = gcd(F (a) | a ∈ R) .

Remark 3.6. Every polynomial F ∈ Int(R) is of the form F = f
pn for some f ∈ R[x] and 

n ∈ N.

(i) F ∈ Int(R) if and only if pn | d(f).
(ii) If F ∈ Int(R) is irreducible in Int(R), then d(f) = pn.

Convention 3.7. Throughout this paper, unless explicitly stated otherwise, let (R, pR)
be a discrete valuation domain with valuation v and let q = |R/pR| be the cardinality 
of the finite residue field of R.

Further, let f ∈ R[x] be a non-constant, primitive polynomial with d(f) = pn and 
irreducible divisor set P and let F = f

n .
p



M. Hiebler et al. / Journal of Algebra 633 (2023) 696–721 703
As we encounter products of a set of irreducible elements quite frequently, we adopt 
a new abbreviated notation to emphasize the focus on the exponents (inspired by the 
standard notation Xa in multivariate polynomial rings).

Notation 3.8. Let P ⊆ R[x] be a non-empty, finite set of polynomials. For any m =
(mg)g∈P ∈ NP

0 , we write

Pm =
∏
g∈P

gmg .

Remark 3.9. Using the notation of Convention 3.7, let m = (mg)g∈P ∈ NP be the vector 
of the multiplicities with which g ∈ P occur as factors of f .

Then, considering the fact that the units of Int(R) are exactly the units of R,

F = f

pn
∼ Pm

pn
=
∏

g∈P gmg

pn

and the (essentially different) factorizations of F correspond to the (essentially differ-
ent) factorizations of 

∏
g∈P gmg

pn . Having this in mind, we restrict our investigation to 
polynomials of the latter form for simplicity.

The following well-known fact deals with the factorizations at issue. It follows from the 
proof [12, Theorem 2.8], which takes advantage of the fact that Int(R) is a subring of the 
polynomial ring over the quotient field of R, where we encounter unique factorization.

Fact 3.10 ([12, Theorem 2.8]). Let (R, pR) be a discrete valuation domain with finite 
residue field and F ∈ Int(R) of the form

F ∼ Pm

pn
=
∏

g∈P gmg

pn
with d(Pm) = pn

where m = (mg)g∈P ∈ NP for g ∈ P, n ∈ N0, and P ⊆ R[x] is a non-empty, finite set 
of irreducible, non-constant polynomials which are pairwise non-associated.

If F = F1 · · ·Fr is a factorization of F into (not necessarily irreducible) non-units in 
Int(R), then, for each 1 ≤ j ≤ r,

Fj ∼
Pmj

pkj
=
∏

g∈Pj
gmj,g

pkj

where ∅ �= Pj ⊆ P, mj = (mj,g)g∈P ∈ NP
0 , and kj ∈ N0 such that 

∑r
j=1 kj = k and ∑r

j=1 mj,g = mg for all g ∈ P.

We conclude this section with a straight-forward observation on the properties of 
Notation 3.8.
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Remark 3.11. Let � = (�g)g∈P , m = (mg)g∈P ∈ NP
0 . Using the notation of Conven-

tion 3.7, we infer

P� = Pm ⇐⇒ � = m

as well as

P� · Pm = P�+m and (Pm)j = Pjm for j ∈ N0

from the definition and the fact that R[x] is factorial.
Note also that all divisors of Pm in R[x] are given by the elements of R[x] which are 

associated to Pk for some k ∈ NP
0 with k ≤ m componentwise.

4. The fixed divisor kernel of a polynomial

Definition 4.1. Using the notation of Convention 3.7, we define the set of fixed divisor 
witnesses of f as

W(f) = {a ∈ R | v(f(a)) = n},

where we recall that n = v(d(f)). Further, we define the fixed divisor kernel of f to be

fd-ker(f) =
⋂

a∈W(f)

ker
(
m ∈ QP �→ 〈m, vP(a)〉

)

where 〈 · , · 〉 is the standard inner product and vP(a) = (v(g(a)))g∈P for a ∈ R. (Note 
that the choice of P only affects the indexing, but not the values of valuations.)

Remark 4.2. Unraveling the definition yields 〈m, vP(a)〉 =
∑

g∈P mgv(g(a)) as well as

fd-ker(f) =
{
m = (mg)g∈P ∈ QP ∣∣ ∀a ∈ W(f) :

∑
g∈P

mgv(g(a)) = 0
}
.

Remark 4.3. The following observations are easily verified:

(i) Whenever r, s ∈ R with v(r − s) ≥ v(r) + 1, then v(s) = v(r).
(ii) Let g ∈ R[x], a, w ∈ R, and n ∈ N. If v(a − w) ≥ n, then v(g(a) − g(w)) ≥ n.
(iii) The combination of the items above implies that whenever v(a −w) ≥ v(g(a)) + 1, 

then v(g(a)) = v(g(w)).

By Remark 4.3(iii), the set W(f) of witnesses is always infinite, since W(f) �= ∅ and 
with every w ∈ W(f) the (infinite) residue class w + pv(d(f))+1R is a subset of W(f).
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However, as a subspace of QP , fd-ker(f) has finite dimension and hence fd-ker(f) is 
the kernel of a linear map QP → QW for a finite set W ⊆ W(f), or equivalently, it can 
be represented as the kernel of a matrix.

Definition 4.4. Let W be a finite set. With the notation of Convention 3.7, we say that 
a matrix A ∈ QW×P is an fdp matrix (short for fixed divisor partition matrix) of f if 
ker(A) = fd-ker(f) (where we consider the kernel of A to be the kernel of the vector 
space homomorphism QP → QW associated to A).

Next, we specify how an fdp matrix of f can be determined.

Lemma 4.5. With the notation of Convention 3.7, let W be a set of representatives of 
the witness set W(f) modulo p

⌈
n
2
⌉
R.

Then, for each a ∈ W(f), there exists w ∈ W such that vP(a) = vP(w).
In particular, the matrix (vP(w))w∈W ∈ QW×P is an fdp matrix of f .

Proof. Let w ∈ W be the representative of a modulo p
⌈
n
2
⌉
R. We demonstrate that 

vP(a) = vP(w) holds. Remark 4.3(iii) implies that v(g(a)) = v(g(w)) provided that 
v(g(a)) <

⌈
n
2
⌉
.

It remains to consider the elements of

J =
{
g ∈ P

∣∣∣∣ v(g(a)) ≥
⌈
n

2

⌉}
.

Let m = (mg)g∈P ∈ NP be the vector of the multiplicities with which the polynomials 
g ∈ P occur as divisors of f so that f = Pm (see Notation 3.8). Then

n = v(f(a)) =
∑
g∈P

mgv(g(a)) (4.1)

holds, which implies that the set J contains at most two elements since mg ∈ N. We 
split the remainder of the proof into two cases, |J | = 1 and |J | = 2.

If J = {h}, then

mhv(h(a)) = n−
∑

g∈P\J
mgv(g(a)) = n−

∑
g∈P\J

mgv(g(w)) = mhv(h(w))

and hence v(h(a)) = v(h(w)).
Finally, we assume that J = {h1, h2} with h1 �= h2. Due to Equation (4.1), this is only 

possible if n is even and v(h1(a)) = v(h2(a)) = n
2 . Moreover, by Remark 4.3, v(h1(w)), 

v(h2(w)) are both at least n2 . As w is a fixed divisor witness, it follows that

n = v(f(w)) =
∑

mgv(g(w)) ≥ mh1v(h1(w)) + mh2v(h2(w)) ≥ n

g∈P
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holds. We conclude that v(h1(w)) = v(h2(w)) = n
2 , which proves the claim. �

Example 4.6. Let f = (x2+9)(x −5)3(x −1)(x −7) ∈ Z(3)[x] where Z(3) is the localization 
of Z at 3. A straight-forward verification shows that the fixed divisor of f is 9. In order 
to find an fdp matrix, it suffices to find a set of representatives modulo 3 of all the fixed 
divisor witnesses of f . By evaluating f at 0 and 4, we can verify that both are in W(f). 
Also, the factor (x − 5)3 of f guarantees that no fixed divisor witness is congruent to 2
modulo 3. We set W = {0, 4} and apply Lemma 4.5 to conclude that

(
2 0 0 0
0 0 1 1

)
∈ QW×P

is a fixed divisor partition matrix of f where P = {x2 + 9, x − 5, x − 1, x − 7} (and for 
the purpose of writing down the matrix, we impose the order on W and P with which 
their elements are given here).

In the following, we discuss the connection between fd-ker(f) and the question whether 
F = f

pn is absolutely irreducible (where v(d(f)) = n). We start with the connection to 
integer-valued divisors of powers of F .

Lemma 4.7. Using the notation of Convention 3.7, let f =
∏

g∈P gmg ∈ R[x] where 
m = (mg)g∈P ∈ NP is the vector of the corresponding multiplicities.

If 0 �= k = (kg)g∈P ∈ NP
0 and � ∈ N0 such that 

∏
g∈P gkg

p� divides F j in Int(R) for 
some j ∈ N, then

k ∈ �

n
m + fd-ker(f).

Proof. Using the abbreviated notation for products of polynomials, cf. Notation 3.8, we 
write f = Pm and set f1 = Pk and f2 = Pjm−k. Then f2

pjn−� is the cofactor to f1
p� of F j

in Int(R) and v(f1(a)) ≥ � and v(f2(a)) ≥ jn − � hold for all a ∈ R.
If w ∈ W(f) is a fixed divisor witness of f , Remark 4.2 yields

jn = jv(f(w)) = j〈m, vP(w)〉 = 〈k, vP(w)〉 + 〈jm− k, vP(w)〉
= v(f1(w)) + v(f2(w)) ≥ � + (jn− �) = jn,

implying equality throughout, in particular � = v(f1(w)) = 〈k, vP(w)〉. Then k is a 
solution to the linear equation 〈x, vP(w)〉 = �. Since �nm is another solution to it (cf. Re-
mark 4.2), it follows that

k − �

n
m ∈ ker

(
x ∈ QP �→ 〈x, vP(w)〉

)
for all w ∈ W(f) and thus k − �m ∈ fd-ker(f). �
n
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Next, we show how we can use non-zero elements in fd-ker(f) to construct specific 
polynomials in Int(R), which will turn out to be non-trivial divisors of f

pn .

Definition 4.8. Let u, v ∈ QP . The positive and negative part of u are defined by

u+ = max(u,0) and u− = −min(u,0),

respectively, where max and min are to be understood componentwise and 0 = (0)g∈P
denotes the zero vector. We further write ‖u‖∞ = maxg∈P |ug| for the usual infinity 
norm of u = (ug)g∈P and

∣∣⌈u⌉∣∣∞ =
⌈
‖u‖∞

⌉
.

Finally, for u = (ug)g∈P and v = (vg)g∈P in QP , we define

u · v = (ug · vg)g∈P and u

v
=
(
ug

vg

)
g∈P

,

where the latter is only defined whenever all vg are non-zero. The unit element with 
respect to this multiplication is 1 = (1)g∈P .

Proposition 4.9. Using the notation of Convention 3.7, let f =
∏

g∈P gmg ∈ R[x] where 
m = (mg)g∈P ∈ NP is the vector of the corresponding multiplicities.

If 0 �= v = (vg)g∈P ∈ fd-ker(f) ∩ ZP and k ∈ N with k ≥ (n + 1)
∣∣⌈v+

m

⌉∣∣
∞, then

H =
∏

g∈P gkmg−vg

pkn
∈ Int(R).

Moreover, H is not a power of f
pn .

Remark 4.10. Set s+ =
∣∣⌈v+

m

⌉∣∣
∞ and note that all components of m are positive. By 

definition of v+, the identity

s+ = max
{⌈

vg
mg

⌉ ∣∣∣∣ g ∈ P with vg ≥ 0
}

holds and we have s+ > 0 since 0 �= vP(w) ∈ NP
0 for all fixed divisor witnesses w of f .

The definition also immediately implies s+m ≥ v+.
Observe further that km− v only consists of positive integers because the positivity 

of k entails either k > 0 ≥ vg
mg

, if vg ≤ 0, or k ≥ (n + 1)s+ ≥ (n + 1) vg
mg

>
vg
mg

, if vg > 0.

Proof. Again, we switch to the abbreviation for writing polynomial products (Nota-
tion 3.8) and set f̃ = Pkm−v to be the numerator of H.
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We need to show

v(f̃(a)) ≥ kn for all a ∈ R. (4.2)

Assume first that v(h(a)) = ∞ for some h ∈ P, that is, at least one entry of vP(a) is 
equal to ∞. Then the strict positivity of km − v, as observed in Remark 4.10, assures 
that the component of km− v corresponding to h is positive and hence

v(f̃(a)) = 〈km− v, vP(a)〉 = ∞ ≥ kn.

For the remainder of the proof we may thus assume that v(g(a)) < ∞ for all g ∈ P. 
Then we obtain

v(f̃(a)) = 〈km− v, vP(a)〉 = k〈m, vP(a)〉 − 〈v, vP(a)〉
= k · v(f(a)) − 〈v, vP(a)〉

(4.3)

from Remark 4.2, as the difference is now well-defined.
If a is a fixed divisor witness, then 〈v, vP(a)〉 = 0, so v(f̃(a)) = kv(f(a)) = kn by (4.3).
It remains to show (4.2) for all a ∈ R with v(f(a)) ≥ n + 1. We claim that

kv(f(a)) ≥ kn + 〈v+, vP(a)〉 (4.4)

holds in that case.
Assume the validity of (4.4) for the moment. Then we obtain

v(f̃(a)) = kv(f(a)) − 〈v, vP(a)〉 ≥ kn + 〈v+, vP(a)〉 − 〈v, vP(a)〉 ≥ kn

from Equation (4.3) and v+ ≥ v, which finishes the proof of (4.2).
We only need to prove Inequality (4.4). Set s+ =

∣∣⌈v+

m

⌉∣∣
∞, as in Remark 4.10, and 

v(f(a)) = n + j for some j ∈ N. Since k ≥ (n + 1)s+ and s+m ≥ v+, we conclude that

k
(
v(f(a)) − n

)
= kj ≥ (n + 1)s+j = ns+j + s+j

≥ ns+ + s+j = s+(n + j) = s+v(f(a))

= s+〈m, vP(a)〉 = 〈s+m, vP(a)〉 ≥ 〈v+, vP(a)〉,

which is equivalent to (4.4).
Finally, we show that H is not a power of F . Suppose the contrary. Then

Pkm−v

pkn
= Ptm

ptn
⇐⇒ ptnPkm−v = pknPtm

for some t ∈ N0, which entails t = k and Pkm−v = Ptm = Pkm since p is also a prime 
element in R[x]. But then v = 0 since R[x] is factorial (cf. Remark 3.11), contradicting 
the assumption on v. �
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We are now ready to prove the main results of this section.

Theorem 1. Let (R, pR) be a discrete valuation domain with valuation v and finite residue 
field. Further, let f =

∏
g∈P gmg ∈ R[x] be a primitive, non-constant polynomial with 

irreducible divisor set P and m = (mg)g∈P ∈ NP the vector of the corresponding multi-
plicities and assume that v(d(f)) = n ∈ N.

If fd-ker(f) �= 0, then F = f
pn is not absolutely irreducible. In fact, if F is irreducible 

and 0 �= v ∈ fd-ker(f) ∩ ZP , then F j factors non-uniquely for all j ∈ N with j ≥
(n + 1) 

(∣∣⌈v+

m

⌉∣∣
∞ +

∣∣⌈v−

m

⌉∣∣
∞

)
.

Remark. Observe that (−v)+ = v−, so that the second summand of the lower bound 
corresponds to the lower bound from Proposition 4.9 for −v.

Proof. We can assume that F is irreducible since otherwise it is also not absolutely 
irreducible. Let 0 �= v ∈ fd-ker(f) ∩ ZP . It suffices to show that F j with j =
(n + 1)

(∣∣⌈v+

m

⌉∣∣
∞ +

∣∣⌈v−

m

⌉∣∣
∞

)
factors non-uniquely. Let k, � ∈ N with

k ≥ (n + 1)
∣∣∣∣
⌈
v+

m

⌉∣∣∣∣
∞

and � ≥ (n + 1)
∣∣∣∣
⌈
v−

m

⌉∣∣∣∣
∞
.

Using the abbreviated notation for polynomial products (Notation 3.8), it follows from 
Proposition 4.9 that

Pkm−v

pkn
∈ Int(R)

and that this polynomial is not a power of F .
Similarly, we can apply Proposition 4.9 with −v (which is also a non-zero element of 

fd-ker(f) ∩ ZP) and conclude that

P�m−(−v)

p�n
= P�m+v

p�n
∈ Int(R),

again not a power of F . Therefore,

F k+� = P(k+�)m

p(k+�)n = Pkm−v

pkn
· P

�m+v

p�n

is a factorization of F k+� (not necessarily into irreducibles) which yields a factor-
ization of F k+� into irreducibles different from the trivial one F · F · · ·F (see Re-
mark 3.3). It follows that F j factors non-uniquely for every exponent j with j ≥
(n + 1) 

(∣∣⌈v+ ⌉∣∣ +
∣∣⌈v− ⌉∣∣ ). �
m ∞ m ∞
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Theorem 2. Let (R, pR) be a discrete valuation domain with valuation v and finite residue 
field. Further, let f ∈ R[x] be a primitive, non-constant polynomial with v(d(f)) = n ∈ N

and assume that f is not a proper power of another polynomial in R[x].
Then f

pn is absolutely irreducible if and only if fd-ker(f) = 0.

Proof. Assume first fd-ker(f) = 0, let P be an irreducible divisor set of f , write f ∼ Pm

(cf. Remark 3.9), and set F = f
pn . Let F̃ be a non-constant factor of F j in Int(R) for 

some j ∈ N. We show that F̃ is itself (associated to) a power of F . Note that for j = 1
this implies that F is irreducible.

It follows from Fact 3.10, with the abbreviated notation for polynomial products 
(Notation 3.8), that F̃ ∼ Pk

p� for some � ∈ N0 and 0 �= k ∈ NP
0 .

We can apply Lemma 4.7 to infer

k − �

n
m ∈ fd-ker(f) = 0 =⇒ �

n
m = k ∈ NP

0 .

Since f is assumed not a proper power of another polynomial in R[x], we must have3

gcd(m) = 1 and hence � = tn for some t ∈ N0 and k = tm. It follows that F̃ ∼
(

Pm

pn

)t
∼

F t, which was to be shown.
Conversely, if fd-ker(f) �= 0, then f

pn is not absolutely irreducible according to Theo-
rem 1. �
Remark 4.11. Let D be a Dedekind domain, P a maximal ideal of D with finite index, 
and F = f

c ∈ Int(D) with f ∈ D[x] primitive, non-constant, not a proper power of 
another polynomial and 0 �= c ∈ D. Since Int(D) ⊆ Int(DP ) (see [8, Theorem I.2.3]), 
we can regard F as integer-valued polynomial over the discrete valuation domain DP . 
If fd-ker(f) = 0, then F is absolutely irreducible in Int(DP ) and a straight-forward 
argument (see, for example, [18, Corollary 6.11]) shows that F is absolutely irreducible 
in Int(D),

Remark 4.12. We point out that there is a loose relation between the fdp matrices in-
troduced here and the partition matrices defined in the paper of Frisch, Nakato and 
Rissner [18, Definition 5.5] on absolute irreducibility of completely split polynomials in 
Int(R). Partition matrices, however, have trivial kernel ([18, Proposition 6.5]). If the 
split integer-valued polynomial to which a partition matrix A is associated is absolutely 
irreducible, A is indeed an fdp matrix upon suitable interpretation of row and column 
sets. This is not the case for split polynomials which are not absolutely irreducible.

3 To be understood as the gcd of all components of m.
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5. Bounds for the minimal power of a non-absolutely irreducible polynomial to factor 
non-uniquely

As pointed out in the introduction, for F ∈ Int(R) of the form fp it suffices to check 
whether F 2 factors uniquely to verify absolute irreducibility. This motivates the question 
whether an analogous statement holds if the denominator of F is not square-free: Is it 
possible to conclude that F is absolutely irreducible whenever F k factors uniquely for 
1 ≤ k ≤ S for some S which is yet to be determined?

Theorem 1 provides an upper bound for such S for an integer-valued polynomial F
depending on the (absolute) values of coordinates of integer elements in the fixed divisor 
kernel of the numerator polynomial f of F .

In the following, we will provide, among others, a bound S which only depends on the 
valuation of the denominator of F and the size of the finite residue field of the underlying 
discrete valuation domain R. To do so, we look for an upper bound for

min
{
‖v‖∞

∣∣ 0 �= v ∈ fd-ker(f) ∩ ZP} ,
which motivates the following definition.

Definition 5.1. Let f be as in notation of Convention 3.7. We call an fdp matrix of f
reduced if its rows are Q-linearly independent.

We hence look for an upper bound for

min
{
‖v‖∞

∣∣ 0 �= v ∈ ker(A) ∩ ZP}
where A is a reduced fdp matrix of f . To this end, we use a Siegel-type lemma which 
we tailored to the type of matrices which occur as (reduced) fdp matrices. The proof 
below is essentially the same as the one in Baker’s textbook [5, Lemma 1, Chapter 3], the 
modifications merely take the additional assumptions on the system matrix into account.

Lemma 5.2 (Adapted version of Siegel’s lemma). Let r ∈ N0, s ∈ N, and I, J be sets 
with |I| = r, |J | = r + s. Let n ∈ N and A = (ai,j)(i,j)∈I×J ∈ NI×J

0 be such that ∑
j∈J ai,j ≤ n for all i ∈ I. Assume further that A contains u rows with exactly one 

non-zero entry.
Then

min
{
‖v‖∞

∣∣ 0 �= v ∈ ker(A) ∩ ZJ
}
≤
⌊
n

r−u
s

⌋
.

Proof. Assume first u = 0, set b = �n r
s � and X =

{
x ∈ NJ

0
∣∣ ‖x‖∞ ≤ b

}
. Then x ∈ X

implies

0 ≤ (Ax)i =
∑

ai,jxj ≤ nb (5.1)

j∈J
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for all i ∈ I. Hence, the set {Ax | x ∈ X} contains at most (nb + 1)r elements, whereas 
the cardinality of X is equal to (b + 1)r+s.

Since

(b + 1)r+s = (b + 1)s(b + 1)r > nr(b + 1)r ≥ (nb + 1)r (5.2)

holds, it follows from the pigeonhole principle that there exist x, y ∈ X with x �= y such 
that Ax = Ay. Hence v = x − y �= 0 is an element in ker(A) whose every coordinate 
has absolute value at most b.

Now turn to the general case u ≥ 0. Let E be the set of row indices for which the 
corresponding rows contain exactly one non-zero entry and set C = {j ∈ J | ∃e ∈
E : ae,j �= 0}. The definition of E implies |C| ≤ |E| ≤ u. Consider now the matrix 
B which is obtained from A by deleting the u rows corresponding to E as well as the 
columns corresponding to C. Then B has r− u rows and r+ s − |C| columns. Note that 
if v ∈ ker(A) and k ∈ C, then vk = 0. Hence

min
{
‖v‖∞

∣∣ 0 �= v ∈ ker(A) ∩ ZJ
}

= min
{
‖v‖∞

∣∣∣ 0 �= v ∈ ker(B) ∩ ZJ\C
}

≤
⌊
n

r−u
s+u−|C|

⌋
≤
⌊
n

r−u
s

⌋

by applying the result of the first part to B. �
Theorem 3. Let (R, pR) be a discrete valuation domain with valuation v and let q =
|R/pR| be the cardinality of the finite residue field of R. Further, let f ∈ R[x] be a 
non-constant, primitive polynomial with irreducible divisor set P and (mg)g∈P ∈ NP the 
vector of the corresponding multiplicities, that is, f =

∏
g∈P gmg . Let v(d(f)) = n ∈ N

and A ∈ QW×P (with W ⊆ W(f)) be a reduced fdp matrix of f containing u rows with 
only one non-zero entry.

Assume that F is irreducible. Then the following assertions are equivalent:

(i) F j factors uniquely for all j ∈ N, that is, F is absolutely irreducible.
(ii) FS factors uniquely for S = 2(n + 1)nq

⌈
n
2
⌉
.

(iii) FS factors uniquely for S = 2(n + 1)nrank(A)−u.

Remark 5.3. It follows from Theorem 3 that F is not absolutely irreducible if and only 

if F j factors non-uniquely for some 1 ≤ j ≤ 2(n + 1)nq

⌈
n
2
⌉
. Note that this upper bound 

only depends on the fixed divisor of f and the size of the residue class field, but not the 
reduced fdp matrix A.

Proof. Let r = rank(A) = |W |. By definition, (i) implies (ii) and (iii). Moreover, by 
Lemma 4.5, A has at most q

⌈
n
2
⌉
rows and hence r−u ≤ r ≤ q

⌈
n
2
⌉
, so that (ii) implies (iii).
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We prove by contraposition that (i) follows from (iii). Assume that F is irreducible, but 
not absolutely irreducible. Then fd-ker(f) = ker(A) �= 0 by Theorem 2 or, equivalently, 
r < |P|. We apply Lemma 5.2 to A: There exists 0 �= v ∈ ker(A) ∩ ZP with ‖v‖∞ ≤⌊
n

r−u
|P|−r

⌋
≤ nr−u. Since v ∈ fd-ker(f) ∩ZP and F is assumed to be irreducible, it follows 

from Theorem 1 that F j factors non-uniquely for all j ≥ (n + 1) 
(∣∣⌈v+

m

⌉∣∣
∞ +

∣∣⌈v−

m

⌉∣∣
∞

)
. 

Because of

S = 2(n + 1)nr−u ≥ 2(n + 1)‖v‖∞ ≥ (n + 1)
(∣∣∣∣
⌈
v+

m

⌉∣∣∣∣
∞

+
∣∣∣∣
⌈
v−

m

⌉∣∣∣∣
∞

)
,

it follows that FS factors non-uniquely so that (iii) does not hold. �
6. Tightness of the bounds

By Theorem 1, we know that F = f
pn is not absolutely irreducible and, more ac-

curately, that F j factors non-uniquely whenever 0 �= v ∈ fd-ker(f) and j ∈ N with 

j ≥ (n + 1) 
(∣∣⌈v+

m

⌉∣∣
∞ +

∣∣⌈v−

m

⌉∣∣
∞

)
.

We show below, in Theorem 4, that this bound cannot be improved in general. Indeed, 
we show that for all integers n ≥ 2 there exists a polynomial f ∈ R[x] with v(d(f)) = n

such that m = 1 = (1)g∈P , F = f
pn is irreducible and factors uniquely up to the bound 

(n + 1)K with

K = min
{
‖v+‖∞ + ‖v−‖∞

∣∣ 0 �= v ∈ ker(A) ∩ ZP} ,
where A is a (reduced) fdp matrix of f . As already mentioned in the introduction, the 
case n = 1 has been covered where the bound is known to be 2.

By Lemma 5.2 (variation of Siegel’s lemma) above, K ≤ 2nr−u whenever A contains r
rows, u of which contain exactly one non-zero entry. In Theorem 4, we furnish examples 
for every r ≥ 2 such that

(i) u = 1 and
(ii) K = (n − 1)r−1 + (n − 1)r−2.

It remains open whether this is actually optimal, in the sense that

(n− 1)r−1 + (n− 1)r−2 = max
A∈A

min
{
‖v+‖∞ + ‖v−‖∞

∣∣ 0 �= v ∈ ker(A) ∩ ZP} ,
where A denotes the set of all reduced fdp matrices A of f with exactly one row with 
only one non-zero entry.

The next proposition establishes sufficient conditions on the polynomial f in order to 
achieve the asserted bound, whereas in Theorem 4 we show that such polynomials can 
always be realized.
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Proposition 6.1. Let r, n ≥ 2 be integers. Using the notation of Convention 3.7, let 
f =

∏
g∈P g where P = {g1, . . . , gr+1} is an irreducible divisor set, v(d(f)) = n, and

A =

⎛
⎜⎜⎜⎜⎝

1 n− 1
1 n− 1

. . . . . .
1 n− 1

n

⎞
⎟⎟⎟⎟⎠ ∈ NW×P

0

is a reduced fdp matrix of f for some W ⊆ W(f) with |W | = r, where the i-th column 
corresponds to the polynomial gi. In addition, we assume that there exist a1, a2 ∈ R such 
that v(gi(ai)) = n + 1 and v(gj(ai)) = 0 for all i = 1, 2 and 1 ≤ j ≤ r + 1 with j �= i.

Then F is irreducible, but not absolutely irreducible in Int(R). Indeed, the minimal 
exponent S such that FS does not factor uniquely satisfies the two equations:

(i) S = (n + 1) 
(
(n− 1)r−1 + (n− 1)r−2) with r = rank(A) and

(ii) S = (n +1) min
{
‖v+‖∞ + ‖v−‖∞

∣∣ 0 �= v ∈ fd-ker(f) ∩ ZP} (which is the minimal 
lower bound given in Theorem 1 applied to the current setting).

Proof. For readability, we write i ∈ [r + 1] whenever we address gi ∈ P.
First, we determine ker(A). Let u = (ui)r+1

i=1 ∈ ker(A). It is immediately seen that 
ur+1 = 0. Moreover, a straight-forward computation yields that ui = −(n − 1)ui+1 for 
all 1 ≤ i ≤ r − 1. Therefore, ui = (−1)r−i(n − 1)r−iur. Thus, ker(A) = spanQ(v) where 
v = (vi)r+1

i=1 with

vi =

⎧⎨
⎩

(−1)r−i(n− 1)r−i, 1 ≤ i ≤ r,

0, i = r + 1.
(6.1)

This implies dim(ker(A)) = 1 and hence rank(A) = r, as claimed.
Next, we set

K = min
{
‖v+‖∞ + ‖v−‖∞ | 0 �= v ∈ ker(A) ∩ ZP} .

Note that Theorem 1 guarantees that F (n+1)K factors non-uniquely. In order to prove 
the whole assertion of the theorem, we need to show that

(a) S = (n + 1)K is the smallest power of F factoring non-uniquely,
(b) F is irreducible, and
(c) K = (n − 1)r−1 + (n − 1)r−2.

We infer ker(A) ∩Zr+1 = Zv by considering the r-th component of λv for λ ∈ Q. From 
Equation (6.1), we conclude that v1 and v2 have opposite signs and |v1| ≥ |v2| ≥ |vi| for 
i > 2. (Equality is only possible for n = 2.) Hence
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‖λv+‖∞ + ‖λv−‖∞ = |λ| (|v1| + |v2|) ≥ (n− 1)r−1 + (n− 1)r−2

for all λ ∈ Z, λ �= 0. Since 0 �= v ∈ ker(A) satisfies this with equality, we have proven 
Item (c) from the list above.

Let j ∈ N and F1, F2 ∈ Int(D) (not necessarily irreducible) such that F j = F1F2. By 
Fact 3.10, we know that

F1 ∼ Pk

p�
=
∏r+1

i=1 gki
i

p�
and F2 ∼ Pj1−k

pjn−�
=
∏r+1

i=1 gj−ki

i

pjn−�
(6.2)

for some 0 ≤ � ≤ jn, k = (ki)r+1
i=1 ∈ Nr+1

0 with k ≤ j1 such that

v(d(Pk)) ≥ � and v(d(Pj1−k)) ≥ jn− �.

We apply Lemma 4.7 for the factor F1 of F j and conclude that

k = �

n
1 + λv (6.3)

for some λ ∈ Q.
Observe that ki ∈ N0 and hence if λ = 0, then F1 is necessarily a power of F (possibly 

the 0-th if � = 0), resulting in a trivial factorization of F j . Moreover, � = 0 immediately 
implies λ = 0, since ki ≥ 0 and v has positive and negative components.

Thus, we can safely assume � > 0 and λ �= 0 from now on. From (6.3) and vr+1 = 0, 
we infer

0 <
�

n
= �

n
+ λvr+1 = kr+1 ∈ N

and therefore that n divides �. We set k = kr+1, so that � = kn.
This allows us to address Item (b) and show that F is irreducible. We consider non-

trivial factorizations of F itself, that is, j = 1. Then k ≤ 1, which implies k = kr+1 = 1
and hence � = kn = n. Given the structure of A, it follows that for each choice of 
J � [r + 1] there exists a fixed divisor witness w such that

v
(∏

i∈J

gi(w)
)

< n,

which, in combination with v(d(Pk)) ≥ � = n, implies that each gi has to appear as a 
factor of the numerator of F1. In other words, k = 1 and hence F1 = F , that is, F is 
irreducible.

It remains to prove Item (a): Whenever F j factors non-uniquely, then j ≥ (n + 1)K. 
At this point, we can assume that j ≥ 2. Moreover, note that k �= e1 for all e ∈ N0, 
since F1F2 is a non-trivial factorization of F . To simplify the following arguments, we 
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also assume λv1 > 0 (by transition from v to −v ∈ ker(A) if necessary). Since v1 and v2
have different signs, we obtain λv2 < 0.

Further, Equation (6.3) yields

kr = k + λvr = k + λ,

which implies λ ∈ Z, as kr and k are integers.
Also, we conclude from Equation (6.3)

k1 = k + λv1 and k2 = k + λv2.

By hypothesis, there exist elements a1, a2 ∈ R such that v(gi(ai)) = n +1 and v(gj(ai)) =
0 for 1 ≤ i ≤ 2 and all 1 ≤ j ≤ r + 1 with j �= i. This further implies

v
(
Pk(a2)

)
= k2v(g2(a2)) = (k + λv2)(n + 1) ≥ �.

Since � = kn and λv2 < 0 by assumption, we conclude that

k ≥ −λv2(n + 1) = |λv2|(n + 1). (6.4)

Similarly, we evaluate f2 at a1 to see

v
(
Pj1−k(a1)

)
= (j − k1)v(g1(a1)) = (j − k − λv1)(n + 1) ≥ jn− �.

This further implies

j − k ≥ λv1(n + 1) = |λv1|(n + 1). (6.5)

Summing up Equations (6.4) and (6.5) yields

j ≥ (n + 1)|λ|(|v1| + |v2|) = |λ|(n + 1)K.

Due to λ ∈ Z, λ �= 0, we obtain j ≥ (n + 1)K whenever F j factors non-uniquely, which 
completes the proof. �

For the remaining part of this section, we show that for every choice of integers r, 
n ≥ 2, there exists a discrete valuation domain R with finite residue field and a set of 
irreducible, non-constant polynomials P which satisfy the hypotheses of Proposition 6.1. 
For the construction, we need a lemma that allows us to simultaneously replace a family 
of polynomials by “irreducible variants” which exhibit a similar behavior concerning the 
valuations when evaluating at elements of R. The following result is a slight variation 
of [17, Lemma 3.3]. Note that the proof is almost identical and only differs in the fact 
that we want to control valuations up to some prespecified point and not only up to the 
fixed divisor. The original result [17, Lemma 3.3] follows as a special case, as described 
in Remark 6.4 below.
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Lemma 6.2 (Variation of [17, Lemma 3.3]). Let D be a Dedekind domain with infinitely 
many maximal ideals and K its quotient field. Further, let I �= ∅ be a finite set and 
hi ∈ D[x] for i ∈ I be monic, non-constant polynomials and set d =

∑
i∈I deg(hi).

Then, for every n ∈ N0, there exist monic polynomials gi ∈ D[x] for i ∈ I such that

(i) deg(gi) = deg(hi) for all i ∈ I,
(ii) the polynomials gi are irreducible in K[x] and pairwise non-associated in K[x], and
(iii) gi ≡ hi mod Pn+1D[x] for every maximal ideal P of D of index at most d.

Remark 6.3. Note that for any Dedekind domain D and prime ideal P of D: If g ≡ h

mod Pn+1D[x], then g(a) ≡ h(a) mod Pn+1 for all a ∈ D.

Remark 6.4. The original assertion [17, Lemma 3.3.] follows immediately by choos-
ing n = max

{
vP
(∏

i∈I hi

) ∣∣ P prime ideal of D with |D/P | ≤ d
}

and observing that 
Lemma 6.2(iii) together with Remarks 4.3 and 6.3 imply that

d

⎛
⎝∏

i∈J1

gi
∏
j∈J2

hi

⎞
⎠ = d

(∏
i∈I

hi

)

holds for all partitions J1 � J2 = I.

Proof. Let P1, . . . , Pm be all maximal ideals of D whose respective residue fields have 
cardinality less than or equal to d, cf. [28, Proposition 13] as to why there are only finitely 
many.

Then there exist e1, . . . , em ∈ N0 such that

d
(∏

i∈I

hi

)
=

m∏
i=1

P ei
i .

Let Q be a prime ideal of D different from any of the Pi above. Further, for i ∈ I, 
let hi = xdi +

∑di−1
j=0 hi,jx

j with di ∈ N and hi,j ∈ D the coefficient of xj of hi. By the 
Chinese Remainder Theorem, there exist ci,j ∈ D for i ∈ I and 0 ≤ j ≤ di−1 such that

(a) ci,j ∈
∏m

i=1 P
ei+n+1
i for all i ∈ I and 0 ≤ j ≤ di − 1,

(b) ci,j ≡ −hi,j mod Q for all i ∈ I and 0 ≤ j ≤ di − 1, and
(c) ci,0 �≡ −hi,0 mod Q2 for all i ∈ I.

These conditions determine the elements ci,j only modulo Q2∏m
i=1 P

ei+n+1
i . This allows 

us to choose the elements in a way such that ci,0 + hi,0 �= cj,0 + hj,0 for i �= j.
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We set

gi = hi +
di−1∑
j=0

ci,jx
j .

By construction, the polynomials gi are monic and satisfy Assertion (i). Moreover, by 
choice of ci,j , it follows that

gi ≡ hi mod
m∏
i=1

P ei+n+1
i D[x],

which, in turn, implies Assertion (iii).
Finally, by construction, the polynomials gi, i ∈ I, are irreducible in D[x] according to 

Eisenstein’s criterion (cf. [22, §29, Lemma 1]). Since the gi are monic and D is integrally 
closed, it follows that the polynomials gi are also irreducible in K[x] (cf. [6, Ch. 5, §1.3, 
Prop. 11]). The choice of ci,0 guarantees that the gi are pairwise non-associated in K[x]. 
Hence Assertion (ii) holds, which completes the proof. �
Theorem 4. Let r, n ≥ 2 be integers.

Then there exists a discrete valuation domain (R, pR) with finite residue field and a 
polynomial F = f

pn ∈ Int(R) which is irreducible, but not absolutely irreducible in Int(R)
(both R and F depending on r) such that the minimal exponent S for which FS does not 
factor uniquely satisfies

(i) S = (n + 1) 
(
(n− 1)r−1 + (n− 1)r−2) where r is the rank of a (reduced) fdp matrix 

of f and
(ii) S = (n + 1) min

{
‖v+‖∞ + ‖v−‖∞

∣∣ 0 �= v ∈ fd-ker(f) ∩ ZP}.
In particular, it follows that the lower bound given in Theorem 1 cannot be improved in 
general.

Remark 6.5. As to the dependence of R and F on r, we point out that the size of the 
residue field of R in the construction below is at least r + 2 and the polynomial f has 
r + 1 non-associated, irreducible factors.

Proof. Let p be a prime number with p ≥ r + 2 and set R = Z(p). In order to prove the 
assertions, we construct polynomials g1, . . . , gr+1 to satisfy the hypotheses of Proposi-
tion 6.1. The construction takes place over the ring Z instead of Z(p), as we would like 
to invoke Lemma 6.2 to find gj ∈ Z[x] with the desired properties.

We choose w1, w2, . . . , wr, a1, a2, zr+3, . . . , zp ∈ Z to be a complete system of 
residues modulo p ≥ r + 2. For simplicity, we assume that this choice does not contain 
a complete set of residues modulo any prime less than p.

Then there exist b1, . . . , br, c1, c2 ∈ Z satisfying the conditions
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(i) v(bi − wi) = 1 for all 1 ≤ i ≤ r and
(ii) v(ci − ai) = 1 for i = 1, 2.

We set

hj =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(x− b1)(x− c1)n+1 j = 1,
(x− b1)n−1(x− b2)(x− c2)n+1 j = 2,
(x− bj−1)n−1(x− bj) 3 ≤ j ≤ r − 1,
(x− br−1)n−1 j = r, and
(x− br)n

∏p
i=r+3(x− zi)n+1 j = r + 1.

By construction, it follows that

v(hj(wi)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 i = j and 1 ≤ j ≤ r − 1,
n− 1 i = j − 1 and 2 ≤ j ≤ r,

n i = r and j = r + 1,
0 otherwise,

(6.6)

and, for � = 1, 2,

v(hj(a�)) =
{
n + 1 j = �, and
0 j �= � and 1 ≤ j ≤ r + 1.

Moreover, if a ∈ R, then a is congruent to exactly one of the wi, a�, or zk with 1 ≤ i ≤ r, 
� = 1, 2, and r + 3 ≤ k ≤ p modulo pR. This implies that a is congruent to one of the 
elements bi, c�, or zk. Thus, for all a ∈ R,

v

⎛
⎝r+1∏

j=1
hj(a)

⎞
⎠ ≥

⎧⎪⎪⎨
⎪⎪⎩

1 + (n− 1) a ≡ bi mod pR with 1 ≤ i ≤ r − 1,
n a ≡ br mod pR,

n + 1 a ≡ c� or a ≡ zk with � = 1, 2, r + 3 ≤ k ≤ p,

and hence, in combination with Equation (6.6),

v

⎛
⎝d

⎛
⎝r+1∏

j=1
hj

⎞
⎠
⎞
⎠ = n.

We apply Lemma 6.2 to find monic polynomials gj ∈ Z[x] for 1 ≤ j ≤ r+1 which are 
irreducible in Q[x] such that for all 1 ≤ j ≤ r + 1, we have

gj ≡ hj mod pn+2Z[x]. (6.7)
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Note that all gj are irreducible in Q[x] by Lemma 6.2, and hence all gi are irreducible 
in Z(p)[x] ⊆ Q[x]. Moreover, from (6.7) we conclude that

gj ≡ hj mod pn+2Z(p)[x]

holds, which, in turn, immediately implies

gj(a) ≡ hj(a) mod pn+2Z(p) (6.8)

for all a ∈ Z(p) = R and all 1 ≤ j ≤ r + 1.
We set f =

∏r+1
j=1 gj . By Remark 4.3, in combination with Congruence (6.8), it follows 

that v(gj(wi)) = v(hj(wi)) and v(gj(a�)) = v(hj(a�)) for all 1 ≤ j ≤ r + 1, 1 ≤ i ≤ r, 
and � = 1, 2. This implies that g1, . . . , gr+1 satisfy the hypotheses of Proposition 6.1. 
The assertion follows. �
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