Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of KAB-DR
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Musiime, Catherine"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemMetadata only
    Epidemic Analysis and Mathematical Modelling of Influenza with Vaccination
    (Kabale University, 2021) Musiime, Catherine
    In this study, we discuss an SLIRV model developed by Jonnalagadda & Gaddam (2016) for the transmission of influenza A with vaccination using tools from ordinary differential equations. We show that if the product of the recruitment rate and the ratio of infection rate to mean latent period is less that the product the sums μ + m, μ + m and + a + y; where μ, a,y,m and 1/ware natural death rate, disease-related death rate, recovery rate, vaccination rate and mean latent period, respectively; then the disease free equilibrium will be locally and globally asymptotically stable, an indication that that disease can be eradicated from the population.
  • Loading...
    Thumbnail Image
    ItemRestricted
    Epidemic Analysis and Mathematical Modelling of Influenza with Vaccination.
    (Kabale University, 2021) Musiime, Catherine
    In this study, we discuss a SLIRV model developed by Jonnalagadda & Gaddam (2016) for the transmission of influenza A with vaccination using tools from ordinary differential equations. We show that if the product of the recruitment rate and the ratio of infection rate to mean latent period is less than the product the sums µ + m, µ + m and + a + y; where µ, a, y, m and 1/ware natural death rate, disease-related death rate, recovery rate, vaccination rate and mean latent period, respectively; then the disease-free equilibrium will be locally and globally asymptotically stable, an indication that that disease can be eradicated from the population.

Kabale University copyright © 2025

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback