Browsing by Author "Philip, Tibenderana"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Concrete Production and Curing with Recycled Wastewater: A Review on the Current State of Knowledge and Practice(Hindawi, 2022) Tobby Michael, Agwe; Philip, Tibenderana; Moses N., Twesigye-Omwe; Joel, Webster Mbujje; Sholagberu Taofeeq, AbdulkadirA number of factors have combined to put excessive pressure on the finite available freshwater resources. These include increasing population, rapid urbanization, industrialization, changed land pattern usage and land cover, change in the overall ecological system, and increased temperature and unscientific compromises in the extraction of water are at alarming threshold putting pressure on the finite available freshwater resources. As a result, many countries have been stressed or are at the verge of being stressed. The problem is worsened day by day by prolonged drought, unchecked discharge of untreated or partially treated wastewater to the freshwater reservoirs and lack of proper water quality control measures and management. Many initiatives such as Zero Liquid Discharge of industrial wastewater into freshwater bodies such as reservoirs, lakes, and ponds, and the use of recycled wastewater for irrigation and domestic purposes have started to be embraced as measures to put a check on the fast depleting freshwater resources for sustainable socio-economic development. The construction industry is the second largest consumer of freshwater just after agriculture. Concreting alone consumes, annually, over one trillion m3 of freshwater globally while the concept of the use of wastewater and/or recycled water in the concrete-making processes is yet to be adopted. Hence, this paper presents a general review of the current state of knowledge and practice on concrete production and curing using recycled wastewater from industrial, commercial, and domestic activities. An extensive review of the existing literature revealed that recycled water is fit for concrete production and curing purposes. The observations made are based on the assessment of wastewater quality parameters and their impacts on some selected concrete properties such as initial setting time and compressive strength. Due to scanty research on the impacts of varying concentrations of different ingredients in any questionable water unselected properties of reinforced concrete and its durability, thus, further research is recommendedItem Open Access Concrete Production and Curing with Recycled Wastewater: A Review on the Current State of Knowledge and Practice(Hindawi, 2022) Tobby Michael, Agwe; Philip, Tibenderana; Moses N, Twesigye-Omwe; Joel Webster, Mbujje; Abdulkadir, Sholagberu TaofeeqA number of factors have combined to put excessive pressure on the finite available freshwater resources. These include increasing population, rapid urbanization, industrialization, changed land pattern usage and land cover, change in the overall ecological system, and increased temperature and unscientific compromises in the extraction of water are at alarming threshold putting pressure on the finite available freshwater resources. As a result, many countries have been stressed or are at the verge of being stressed. The problem is worsened day by day by prolonged drought, unchecked discharge of untreated or partially treated wastewater to the freshwater reservoirs and lack of proper water quality control measures and management. Many initiatives such as Zero Liquid Discharge of industrial wastewater into freshwater bodies such as reservoirs, lakes, and ponds, and the use of recycled wastewater for irrigation and domestic purposes have started to be embraced as measures to put a check on the fast depleting freshwater resources for sustainable socio-economic development. The construction industry is the second largest consumer of freshwater just after agriculture. Concreting alone consumes, annually, over one trillion m3 of freshwater globally while the concept of the use of wastewater and/or recycled water in the concrete-making processes is yet to be adopted. Hence, this paper presents a general review of the current state of knowledge and practice on concrete production and curing using recycled wastewater from industrial, commercial, and domestic activities. An extensive review of the existing literature revealed that recycled water is fit for concrete production and curing purposes. The observations made are based on the assessment of wastewater quality parameters and their impacts on some selected concrete properties such as initial setting time and compressive strength. Due to scanty research on the impacts of varying concentrations of different ingredients in any questionable water on selected properties of reinforced concrete and its durability, thus, further research is recommended.Item Open Access Spatiotemporal Assessment and Modelling of Roof-Harvested Rainwater Quality in Kigezi Highlands, Uganda(Kabale University, 2022-11-01) Philip, Tibenderana; Moses, Nduhira Twesigye-omwe; Agwe, Tobby Michael; Abdulkadir, Taofeeq S; Denis, ByamukamaWater is an everlasting free resource that is vital for life (Rahman, et al., 2014). Access to water supply is essential to good life and health. It is crucial and pivotal to many other goals highlighted in the United Nation’s Sustainable Development Goals (SDGs). Sustainable access to water for potable and non-potable uses continues to pose enormous challenges. The challenge of achieving water security in Africa is contingent upon the hydrological variability and its extremes (UN-Water, 2010). However, the availability of freshwater resources has become a major challenge facing humanity worldwide especially in developing countries. This situation has further been aggravated by a high rate of urbanization, population growth, rising water demand, continuous depletion of fresh surface water and groundwater, climate change, water governance, extreme social inequality and pollution (Struk-Sokolowska, et al., 2020, Balogun et al., 2016). These situations require that water resources be satisfactorily managed in terms of quantity and quality to meet the current demands and attain future sustainability.