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ABSTRACT  

There are several methods of solving a system of linear equations. Some of which are direct  

methods and others are iterative methods. In this work, we study direct methods specifically Gaussian 

elimination and Cholesky decomposition and make a comparison between the two. It is found out that 

Gaussian elimination is an algorithm in linear algebra for solving a system of linear equations and can also 

be used to find the rank of a matrix, to calculate the determinant of a matrix, and to calculate the inverse of 

an invertible square matrix Whereas Cho!sky decomposition is a decomposition of a Hermitian, 

positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which 

is useful for efficient numerical solutions.  
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CHAPTER ONE  

INTRODUCTION 

1.0 Introduction  

This section presents the background of the study, statement of the problem. purpose of the study, 

objectives of the study and significance of the study.  
\  

1.1 Background of the study  

According to Noreen Jamil (2012), a system of equation is a set or collections of equations solved together. 

Collection of linear equations is- tenned as· system of linear equations. They are often based on same set of 

variables. Various methods have been evolved to solve a linear equations but  
.  

there is no best method yet proposed for solving system of linear equations.  

Among other method of solving system of equations, the Gaussian method and the Cholesky decomposition 

methods will be applied discussed in details.  

According to Matinfar et al., (2008), linear system of equations is important for studying and solving a large 

proportion of the problems in many topics in applied mathematics and engineering. According to Atkinson 

(1985), systems of Simultaneous linear equations occur in solving problems in a wide variety of areas with 

respect to mathematics, statistics, physical quantities (examples are temperature, voltage, population 

management and displacement), Social sciences, engineering and business. They arise directly in solving 

real life problems.  

The world sometimes reveals itself to us as observable relationships among the relevant variables. What it 

does. makes evident relationships that describe how both the variable and their rate of change affect each 

other.  

Tri-diagonal linear systems of the equations can be solved on conventional serial machines in a time 

proportional N, where N is the number of equations. The conventional algorithms do not led themselves directly to parallel 

computation on computers of the ILLIACIV class, in the sense that they appear to be inherently serial. An efficient paraUel algorithm is 

presented in which computation time grows as log N. 'The algorithm is based on recursive doubling 

solutions of linear recurrence relations, and can be used to solve recurrence relations of all orders  

(Stone, 1973).  
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There are various methods in solving linear system of simultaneous equations. In numerical analysis the 

techniques and methods for solving system of linear equations belongs to two categories: direct and 

iterative methods. The direct methods obtain the exact solution (in real arithmetic) in finitely many 

operations whereas iterative method generate a sequence of approximations that only converge in the 

limit to the solution. The direct method falls· into two categories that is the Gaussian elimination 

method and Cholesky decomposition method. Some others are matrix inverse method and LU 

factorization method and Cramer's rule method and Crout elimination method (Dehghan et al., 2006). 

As the standard method for solving systems of linear equations, Gaussian elimination (GE) is one of the 

most important and ubiquitous numerical algorithms. However, its successful use relies on 

understanding its numerical stability properties and how to organize its computations for efficient  
',,  

execution on modern computers. We give an overview of GE, ranging from theory to computation. We 

explain why GE computes an LU factorization and the various benefits of this matrix factorization 

viewpoint. Pivoting strategies for ensuring numerical stability are described. Special properties of GE 

for certain classes of structured· matrices are summarized (Higham, 2011 ).  

In our day to day lives in various fields, systems of simultaneous linear equations are being applied in 

solving problems in our societies with respect to businesses. Many people use systems of simultaneous 

linear equations for budgeting. In fact. big companies estimate their budgets and the cost of their 

products using systems of simultaneous equations. This helps these companies to provide better rates to 

their customers, thus enabling them to perform well in the market. Not only in companies, we can also 

use it in schools, and ceremony parties in our homes. These systems help us in making various 

predictions on an everyday basis. When we are starting some projects in our homes, we can use these 

systems to predict how we will perform in the future, and we can also use them to predict the 

cumulative profits for each month although many real-world factors are considered while making the 

predictions, systems of simultaneous prove to be very helpful in such scenarios.  

1.2 Statement of the problem  

According to Maron (1982), to make the relationship that exist between variables explicit, we 

frequently attempt to make a mathematical model that will accurately reflect real life situation. Many 

mathematical models accurately reflect real life situation but many of them have the same  
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basic structure although disparity in Symbolic rotation may be utilized, which can arise from economics 

and transportation. There are several methods of solving a system of linear equations some of which are 

direct while others are iterative methods. Thus a mathematical model of the direct method of using the 

Gaussian elimination and Cholesk:y decomposition are highly needed so as to elicit a relationship 

within a linear system of equations.  

Most of many mathematical models arises from net flow from one point to another or in 

relationship to population growth, that is, number of individuals in a particular age group at a particular 

time; thus a need to use Direct methods of Gaussian Elimination and Cholesky decomposition are 

highly required during the solve for system of linear equations.  

1.3 Objectives  

1.3.1 General Objective  

The main objective of the study is to compare the Gaussian elimination and Cholesky  

decomposition methods in solving linear systems of equations.  

1.3.2 Specific Objectives  

To find out;  

i. how Systems of linear equations are grouped.  

ii. the various methods of solving linear systems of equations.  

iii. the relationship between Gaussian elimination and Cholesky decomposition methods in solving 

linear systems of equations.  

1.4 Scope  

The study is done by following the mathematical and computational procedures.  

The study is exclusively on the direct methods of solving linear systems of equations using Gaussian 

elimination and Cholesky decomposition.  

1.6 Significance  

i. Provision of more literature or knowledge for future use systems of linear equations.  

ii. Explanation of mathematical models which reflect real life problems especially in different 

ficlds of science.  
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CHAPTER TWO  

LIERATURER REVIEW 

2.1 Introduction  

According to Noreen Jamil (2012), a system linear equation is a set or collections of equations solved 

together. Collection of linear equations is termed as system of linear equations. They are often based on 

same set of variables, for example 3x+2y-z=I. Various methods have been evolved to solve a linear 

equations but there is no best method yet proposed for solving system of linear equations.  

Among other methods of solving system of equations, the Gaussian method and the Cholesky composition 

methods are applied and discussed in details.  

2.2 Other methods of solving linear systems of equations.  

2.2.1 Crout elimi'natfon  

According to Gustavson et al., ( 1970), an efficient implementation of the Crout elimination method  

in solving large sparse systems of linear equations of arbitrary structure is described. A computer program, 

GNSO, by symbolic processing, generates another program, SOL VE which represents the optimal reduced 

Crout algorithm in the sense that only nonzero elements are stored and operated on. The method represented 

is particularly powerful when a system of fixed sparseness structure must be solved repeatedly with 

different numerical values. In practical examples, the execution of SOLVE was observed to be typically N 

times as fast as that of the full Crout fllgorithm, where N is the order of the system.  

We propose a highly efficient algorithm for direct solution of a sparse N X N system of linear algebraic 

equations,  

Ax=b,  (1.1)  

With an arbitrary zero/nonzero structure of A. this algorithm systematically exploits sparseness by 

eliminating unnecessary arithmetic operations and by storing information in a compact, directly accessible 

manner. It is based on the Crout method, which consists of ( 1) factoring A into a products.  

A=LU,  (l.2)  
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of a lower triangular matrix L and a unit upper matrix U; and (2) solving by back substitution the 

systems-  

Ly=b Ux=y For y and x, 

respectively. Consider,  

(1.3) . 

(1.4)  

a1 IX! + G12X2 + a13X3 = b I  

a21x1 + a2i.x2 + a23/3 = 2  

Q3 IXI + GJ2X2 + G33X3 = b3  

  

l~1  ~  ~1] , is the lower triangular L and  

 

ls1 ls2  

  412 

Uzz 

0  
 
Uz3 , is the upper triangular  
433  

s
  

[ 

[ 



 

 

Problem 1  

Use Crout' s method to solve the system of equations  

x+ 2y+z = 4 -x+ 

3y+2z= 3 2x+y+z 

= 6  

Solution  

Ax=b  

 

From LU =A  

[1~1  
0  

 
412  U13] [ 1  2  

4    1  U22  423 = -1  3    

l31  sz  0  433. 2  1    

[ U11   U12   U13 ] [ 1  2  

il  la   l21u12 + Uzz  lziU13 + Uz3 = -1  3  

la1u  
la1u + lazu22  la1ua + laua ±uaa. 2  1  Comparing corresponding entries left hand side with right hand side, we get;  

U11 = 1, U12 =2,u = 1, l21 = -1  

l21U12 + U22 = 3  ............ ····· (i)  

substituting the values of Z21 = -1 and u, = 2 in equation(i), becomes; Uzz = 5  

lz1U13 + Uz3 = 2  ................... (ii)  

also substituting the values of u13 = 1 and l21 = -1 in equation(ii), becomes; U23 = 3  
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l3mu=2...................... (iii)  

substituting the value of u11 = 1 to get the value of l31, in equation(iii)becomes;  

 

 

substituting the values of l31 =2, u2= 2, andu22 = 5 in equation(iv)becomes;  
I  

l,,=?l,=-0.6  

 

substituting the values of Z31 = 2, u13 = 1,132 = -0.6, and u23 = 

3 in equation(v)becomes;  

13a = 0.8  

Therefore;  

 

Now, Ly= b  

Lety= m  

!1 ~  

 
2 -0.6  

 

  a l [4]  

 
 -a+b  - 3  
 2a- 0.6b + c  6  
comparing their entries;  

a= 4  ........................ (1)  

a= 4  

7
  

[ 

[ 



 

 - -----  - ---------------  

-a+b = 3  ............... (2)  

substituting the value of a = 4,equation2)becomes; b= 7  

2a- 0.6b + c = 6  .............. (3)  

also substituting the values of a, and b, equation(3)becomes;  

'  

C = 2.2 

Therefore

;  
-EE]  

2.2  

Now,Ux = y,where x =  

1 2 1 [X]  [ 4  
 
0 5 3 y = 7  
0 0 0.8 z 2.2  x + 2y + zl 14 l  
 
5y+3z = 7  
 0.8z  2.2  Comparing entries, we have;  

X + 2y + Z = 4  .............. (a)  

5y+3z = 7  ................... (b)  

0.8z = 2.2  ......................... (c)  

From equation(c);  

z = 2.75  

To get the value of y, we are going to substitute the value of z in equation (b), becomes; y 

= -0.25  
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Also to get the value ofx, we are going to substitute the values of y and z in equation (a), becomes;  

.x: = 1.75  

 X]  11.75 l  
 
Therefore; /y'= -0.25  
 z  2.75  
Thus
;   

x= 1.75,  

y = -0.25, and z 

= 2.75  

However there are some other methods which I studied in O'level senior two that can-also help us to 

solve the above problem. These methods are;  

Elimination method. This is achieved by adding or subtracting equations from each· other in order to 

cancel out one of the variables.  

Substitution method. This is achieved by isolating the other variable in an equation and then 

substituting values for these variables in other another equation. and  

Comparing method.  

For these methods one can help each other in solving a problem, but also every method can solve  
.,  
the problem itself without any assistance from others. In other words, a method is applicable in  

another method when solving a problem. Let us use one of these methods in solving problem 1 being 

assisted by another method.  

Let's use Elimination method,  

 X + 2y + Z = 4  (1)  

 -x + 3y + 2z = 3  (2)  

 2x + y + z = 6  (3)  

From equations (1) and (2), we going to eliminate x by adding them, becomes;  
 .  .  
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Sy+ 3z = 7  (4)  

Also we are going get equations (1) and (3) eliminate x by subtracting 2[(d)] from (3), becomes;  

3y +z = 2 Again subtracting 2[(2)] from (3), 

becomes; 7y + Sz = 12  

(6
)  

Applying in Substitution method,  

From equation (5),  z = 2 - 3y  

(5
)  

(7)  

·-.
,  

Substituting z = 2- 3y in any of equations (4), and (6). Let's use equation (4), we have;  

5y +3(2 - 3y)= 7 

5y +6-9y=7 -4y = 1  

y = -¼ = -0.25  

Also we substitute y =-0.25 in equation (7) in order to get the value of z, becomes;  

z = 2 - 3(-0.25) z = 

2.75  

Finally we shall substitute the values ofy and z in any of equations (1), (2), and 3) Let's use 

equation (1), becomes;  

X +2(-0.25) + 2.75 = 4 X 

=4-2.25  

X = 1.75  

.As we have seen Substitution method comes in, but not because Elimination has failed it would also finish to 

solve the problem itself. Substitution and elimination are simpler methods of solving equations.  

10  



 7. 

231TERA TIV:E METHODS:  

According to Meurant (1999), iterative methods define a sequence of approximations that are expected 

to be closer and closer to the exact solution in some given norm, stopping the iterations using some 

predefined criterion, obtaining a vector which is only an approximation of the solution. We start from 

an approximation to the-true solution and if successful, obtain better approximations from a 

computational cycle repeated as often as may be necessary for achieving a required accuracy so that 

the amount of arithmetic depends upon the accuracy required. Iterative methods are used mainly in 

those problems for which convergence is known to be rapid and for systems of large order but with 

many zero coefficients.  

Generally, these methods have more modest storage requirements than direct methods and may  
 -  '  

also be faster depending on the iterative method and the problem. They usually also have better  

vectorization and parallelization properties.  

The Jacobi and Gauss-Seidel methods are examples of the iterative methods.  

Suppose we want to solve a linear system  

Ax = 

b,  

(3.1)  

Where A is non-singular and b is given.  
 

An Iterative method constructs a sequence of vectors {x}, k = 0, 1, ... which is expected to converge 

towards x which is the solution of (3.1), x0 being given. The method is said to be convergent if limk 

..... 00II x - xkll = 0. Most classical iterative methods use a splitting of the matrix A, denoted as A= M-N,  

 

 

a:  

Where M is a non-singular matrix. Then, the sequence x is defined by  

Ml=N+ b,  (3.2)  

And x0 is given. It obvious that if this method is convergent, it converges towards the unique solution 

of (3.1). An interesting question is to determine conditions for this sequence of vectors to converge.  

Let £k =x- be the error at iteration number k. As obviously Mx= N +b, we get  
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erating this result, we obtain the equation for the error  

 
(3.3)  

From equation (3.3), the iterative method converges for all starting vectors if and only if  

 

2.4 DIRECT METHODS.  

According to Meurant (1999), direct methods obtain the solution after a finite number floating point 

operations by doing combinations and modifications of the given equations. Of course, as computer floating 

point operations can only be obtained to a certain given precision, the computed solution is generally 

different from the exact solution, even with a direct method.  

2.4.1 Gaussian elimination  

According to Judd et al, (1998), Gaussian elimination is a common direct method for solving a  

general linear system. We will first consider the solution for a simple class of problems, and then we will 

see how to reduce the general problem to the simple case.  

The simple case is that of triangular matrices. A is lower triangular if all nonzero elements lie on or below 

the diagonal; that is A has the form  

 

 
...  0  
•   •  . .  
•.• Gnn  

Upper triangular matrices have all nonzero entries on or above the diagonal. A is a triangular matrix if it is 

either upper or lower triangular. A diagonal matrix has nonzero element only on the diagonal. Some 

important facts to remember are that a triangular matrix is nonsingular if only and only if all the diagonal 

elements are nonzero, and that lower (upper) triangular matrices are closed under multiplication and 

inversion.  
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~ systems in which A is triangular can be solved by back-substitution. Suppose that A is lower t:b-,C,,, :gular 

and nonsingular. Since all nondiagonal elements in the first row of A are zero, the first row's contribution to 

the system Ax = b reduces to ax = b, which has the solution  

n=bla. With this solution for x in hand, we next solve for x. Row 2 implies the equation an aux= 

b, in which only x is not known. Proceeding down the matrix, we can solve for each component of x in 

sequence. More formally, back-substitution for a lower triangular matrix  
i  

is the following procedure:  

 
 

  k-1  )  

Z.t = a 1bk - L aki Xj ,  

 kk  j=1  

k = 2,3, ...,T.  2)  

which is always well-defined for nonsingular, lower triangular matrices. If A is upper triangular, we can 

similarly solve Ax = b beginning with x = b/a.  

To measure the speed of this solution procedure, we make an operation count  

There are n divisions, nn-1)/2 multiplications, and n(n-1)/2 additions/subtracffons. Ignoring 

additions/subtractions and dropping terms of order less than n, we have an operation count of n/2. 

Therefore solving a triangular system can be done in quadratic time.  

We will now use the special method for triangular matrices as a basis for solving general nonsingular 

matrices. To solve Ax = b for general A, we first factor A into the product of two triangular matrices, A = 

LU where L is lower triangular and U is upper triangular. This is called an LU decomposition of A. We then 

replace the problem Ax= b with the equivalent problem  

L Ux = b, which in turn reduces to two triangular systems, Lz = b and Ur= z. Therefore, to find x, we first 

solve for z in Lz = b and solve for x in Ux = z.  

Gaussian elimination produces such an LU decomposition for any nonsingular A, proceeding row by row, 

transforming A into an upper triangular matrix by means of a sequence of lower triangular  
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t:EJ:sformations. The first step focuses: on getting the first column into upper triangular form, replacing a 

with a zero for i= 2, ... ,n,.  

Suppose that a11 i= 0 Ifwe define /1n = ala,i = 2, ...,n, and cl-ii= aij-/1nav, j = 1, ... ,n, then ah is 

zero for i = 2, ... ,n. Let Am= A. lfwe define a new matrix A<2) to have the same first row as A, m,= a\ 
for i,j= 2, ... ,n, and A(2\1 = 0, i = 2, ... ,n, then  

I       

[(°  
0  

 

 
1  

1)   @12  ·.. in  

-1}  
0  

 2  

:::_ =: ,e 

A(zl,  

 @22  

••   

ha  0   a  "Note that we have premultiplied A by a lower triangular matrix to get A<2>. Proceeding column by column 

in similar fashion, we can construct a series of lower triangular matrices that replaces the elements below 

the diagonal with zeros. If d'kk -:/;. 0, we define  

 k  
@ii  

l [ .. = a} '  
 J  'kk  

0,  

j = k,i= k + 1, ... , n, 

otherwise  

k+i _ {at - l~at1, i = k + 1, ...,n,j = k, ... , n,  
ail -  k  .  
 aiJ,  otherwise  

then we have defined a sequence of matrices such that  

  0    0  0  0   
   .  •      

4+1)  I-  0    0  a+  0  400.  

      .   
  0  ...  0  l!.k  0   

      L(k)    

The result is that A<n> is upper triangular, where the factorization  

(3
)  

(4)  

1

4  

{ 



 

 

 

implies that A= LU where L = (L"D...LOO)' is also lower triangular. 

Note that, there are two difficulties with Gaussian elimination.  

First is the possibility that @a is zero, making equation (3) ill-defined. However, as long as A below 

aa will be nonzero and a rearrangement of rows will bring a nonzero element to the I"" diagonal 

position, allowing us to proceed; this is called pivoting. Even if da is not zero, a small value will 

magnify any numerical error from an earlier step. Therefore a good pivoting scheme will use a 

rearrangement that minimizes this potential problem. Since good pivoting schemes are complex, 

readers should not write their own LU codes but use the refined codes, such as the programs in 

LAPACK, which are available. (Anderson et al, 1992) describes this package. Second, round-off error 

can accumulate because of the mixture of additions and subtractions that occur in.  

To measure the speed of this procedure, we again perform an operation count The factorization step 

involves roughly n3 /3 multiplications and divisions. Solving the two triangular systems 

implicit in LUx = b uses a total of ft' multiplications and divisions. The cost of solving a linear 

problem depends on the context. Since the factorization cost is borne once for any matrix A, if you want 

to solve the linear problem with m different choices of b, the total cost is "ff' /3 + mn2• Therefore the 

fixed cost is cubic in the matrix dimension n, but the marginal cost is quadratic.  

2.4.2 Cholesky decomposition method.  

Cholesky factorization is often the most expensive step in numerically solving a positive definite linear 

system of equations, such as in solving least square problems in signal processing. Due to the inherently 

recursive computation process for Cholesky decomposition. it is very difficult to obtain acceleration by 

exploiting _parallelism on FPGAs. The associated division and square root operations in traditional 

standard Cholesky decomposition represent difficulties because of long latency and data dependency. 

By introducing an extra diagonal matrix into the standard Cholesky decomposition we propose that the 

Cholesky factorization can be realized by designing a single triangular linear equation solver 

implemented on FPGAs. This eliminates the division dependency and thus improves the data 

throughput as well as system performance. By exploiting parallelism and designing the dedicated 

process engine with deep pipelines on FPGAs, we can achieve a significant computation speedup 

(Yang et al., 2009).  
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According to Rakotonirina (2009), we prove that if the matrix of the linear system is symmetric, fe 

Cholesky decomposition can be obtained from the Gauss elimination method without pivoting, without 

proving that the matrix of the system is positive definite. This method is unique when A is positive definite; 

there is only one lower triangular matrix L with strictly positive diagonal entries such that A=LL. 

However, the decomposition need not be unique when A is· positive semidefinite. The converse holds 

trivially: if A can be written as LL for some invertible L, lower triangular or otherwise, then A is 

Hermitian and positive definite.  

According to Dostal et al., (2011), the Cholesky decomposition of symmetric positive semidefinite matrix 

A is a useful tool for solving the related consistent system of linear equations or evaluating the action of a 

generalized inverse, especially when A is relatively large and sparse. To use the Cholesky decomposition 

effectively, it is necessary to identify reliably the positions of zero rows  
,  

or columns of the factors and to choose these positions so that the nonsingular submatrix of A of the 

maximal rank is reasonably conditioned.  

According to Salmela et al., (2006, June), both the matrix inversion and solving a set of linear equations 

can be computed with the aid of the Cholesky decomposition. In this paper, the Cholesky decomposition is 

mapped to the typical resources of digital signal processors (DSP) and our implementation applies a novel 

way of computing the fixed-point inverse square root function. The presented principles result in savings in 

the number of clock cycles. As a result; the Cholesky decomposition can be incorporated in applications 

such as 3G channel estimator where short execution time is crucial.  

According to Seeger (2004), if the system matrix is symmetric positive definite, it is almost always possible 

to use a representation based on the Cholesk:y decomposition which renders the same results (in exact 

arithmetic) at the same or less operational cost, but typically is much more numerically stable.  

We discussed this method in details in chapter four.  

Therefore; from this chapter I have seen that there are other methods that can help us to solve our problems 

in our day to day lives in various fields.  
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CHAPTER THREE 

MATERIALS AND METHODS  

3.1Methods that are used in solving Systems of Linear Equations I. Write 

a linear system of equation  

2. Write down the algorithms of Gaussian elimination and Cholesky decomposition  

3. Solve the system of equations using the above two alternative methods  
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CHAPTER FOUR  

C  

RESULTS  

U {:..,eduction 

-...-,: ~"I' presents results of the study that is the comparison between the two methods direct  

c::er::,:,....:,:hat is Gaussian elimination and Cholesky methods.  

~ ~n Elimination  
--z ~-:od is used to transform the coefficient matrix in its upper triangular form While it is plugged in  

::-:: ::....,s,,,nented matrix of the system of linear equations.  
 

tsus consider the following system of linear n equation and n unknowns 

a1134+ a+2a +···+ a+n34 = b, 021x4 

+ a22 +··+ an34 = b  
•••••••••••• ••'!••· •••••••••••••••••••  

 

Which can be written under matricial form Ax=b  

 

:f a11 * 0, Gaussian Elimination in the first column is written 4$, + 

a!l, + ..+ 4! = »%  
 (1)  + (0)  b(l)  

a22 X2 + ... · a2n Xn = 2  

 (1)x + + (1)  _ b<1)  

 

 12 2  ...  ain Xn -  t · ·  

 (1)   (1)  {1)  
42 + ...+ ah»n = bl  

 . h (O)  (l)  aLJaLJ-a11atJ  •  •  •  ·   
Wit a11 = a11 and a11 = - --- ..... which may be written metrically A,X = b1 and can be au  

obtained in Multiplying (1) by the lower triangular matrix.  
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 1  0  0    0  
 (0)       

 _ a21 1  0    0  
 (0)    

 a       
 (0)       

G,=  
_03  

0  
1 
...  

0  
(0)  

\  44       
'·     

.   0     .  .   {0)       

 an1  
0  0 ...  1   a(0) 

 11       A,= Ga and b, = G,b  

The Gauss Elimination at the second column can be obtained by multiplying to the relation to  

the lower triangular matrix        

 1  0  0  0  ...  0  

 0  1  0  0   0  
 

0  a9  1  0  
 

0   -"32  
...   a)   

  22      

G,=  0  

a(l)  

0  1  
 

0  --il.   

 

,)     Z2      

     •   
 0  _s  0  0   1  
 )   

  22      

The Matricial equation becomes        

AX = b,        

with A, = GG,A and b, = GAG,b.        

In continuing so, finally, U, = b,  

with U = Gn-i •·G,G,A an upper triangular matrix and b1 = Gn-l ••• G2G1b so, 

Gn-1 Gn-2 • GG, is an invertable matrix and the equaton becomes LU, = b  

with L = G1
1G2

1 ... c;!1 G;!2 and we have the decomposition of A as product oflower triangular 

matrix by an upper triangular matrix  

A= LU  

One can check easily that  
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 1  0   0    0   
 9)         
 21  1   0    0   
 (0)     

 4         

 
o»  

a(l) -        

 31  32  
·•.        o» 

a(l)      

 11  22        

L=    -  .    0   
 (0)  (1)        

 a(l+1)1  a(l+1)2   
1  

  
0  

 
 a9)  a?      
 11  22        

     ..  .     9  (a)   (l-1)      

 nl  a(n)z  G#1    
1   

 o»  a9 S ...   
 11  22   LL      

        '  

Problem 4.1.1          

Uncle Innocent has two children: Martin and Janet Martin is 4 years older than Janet, the sum of their 

ages is 22. How old is each child?  

Solution.  

Let M be Martin's age and] be Janet's age.  

The system of linear equation that models the facts given about the children's ages;  

M=J+4  

M-J=4 M 

+J = 22  

(1) 

(2)  

The first step is to write the coefficients of the unknowns in a matrix:  

 

This is called the coefficient matrix of the system.  

Next, the coefficient matrix is augmented by writing the constants that appear on the right□hand sides 

of the equations as an additional column:  
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-13,)  
1 1 22  

Tr:::5 is called the augmented matrix, and each row corresponds to an equation in the given  

 
\  

~first row, R= (l,'--1, 4), corresponds to the first equation, M - J = 4 and  

the second row, R, = (1, 1, 22), corresponds to the second equation, M +J = 22.  

----- " _  

You may choose to include a vertical line as shown above to separate the coefficients of the  
 .  ·,  

unknowns from the extra column representing the constants.  

Now, the counterpart of eliminating a variable from an equation in the system is changing one of the 

entries in the coefficient matrix to zero. Likewise, the counterpart of adding a multiple of one equation to 

another is adding a multiple of one row to another row.  

1 -11-4)  
 
1 1 22  
Adding -1 times the first row of augmented matrix to the second row yields;  

 

1 -114)  
 
0 2 18  
The new second row translates into2J = 18, which means J = 9. Back-substitution into the first row (that 

is, into the equation that represents the first row) yields M- 1(9) = 4 which means M = 4 + 9 = 13  

Therefore; the solution to the system: ( 7) = (\3)  

Thus Martin is 13 years old, and his sister Janet is 9 years old .  
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42 Cholesky Decomposition  

Nini' suppose A is a symmetric positive definite matrix. Then, the Cholesky method consists to  

pose A as the product  

.£. = GTG  

with G is an upper triangular matrix and GT its transpose. Let 

us at first generalize this decomposition.  
i  

 

Definition; Let A= (aiJ)isiJsn a complex symmetric matrix. Let us call  

Gauss matrix of A the upper triangular matrix U(A), obtained after transforming A by 

the Gauss elimination above.  

U11  

U(A) = !  
0
  

 

The Gauss Matrix of A . Then A can be decomposed as the product A = GT G  

G=  

u1  
7  

0  

0  

412 

7  
U22  

V022 

0  

 

 

with ,[uroot squared of the complex number u  
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2of,           
   0   0    0   

   i
1  

@12   in   
   

0  
 1    1   

U(A) =  
azz   llzn   

   ··.     
   

0  0  ...  
(n-1)   

   llitri   

\          

\.          

  1   0    0   0  
  9         
  21   1    0   0    (0)     

  Cli1         

  (0)   (1)       

  da4   (tjz      
  (0)   (1)   

.    .    a   @±2       

(A)=  
       0  

(0)   
(
1
)  

     

  a(l+1)
1  

Gt+12   
1   0  

  44%   
(1)     

   Ha2       

         .    (0)   (1)    (L-1)   

  Gu  a(n)2    GR   1  
  (0) (1)    (L....:1) 

  a   a22 

·  

  a    
A= L(A)D 'DU(A)           

With            1    

   0  

    
  

 
 

D=    

  2   
  •·.  
   1  

 0  0  ~  

   n  

Let G = DU(A). Since A is symmetric, hence L(A)D ' GT·  
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Problem 4.2.1  

Solve the system of equations:  

\ '  

4x,+12x,- 16x4 = 2 12x1 

+ 37x,- 43x4 = 8 -16x1 

-43x2 + 98x = 11  

Solution  

Let A= (3  
-16 -43  

-43 ,b= 8  
 98  11  

Since A is symmetric, then A = LLT  

Steps to follow when solving this problem; 

Step 1: A = LL' then solve for L  

Step2: AX= B  

But A= LLr. becomes LLTX = B We 

let Lr X = Y then we solve for Y Step3: 

Lr X = Y we solve for X  

= LL'X = A,let L'X = Y = LY = b then I' X = b  

Let L = (:  

0  

 
 

 
  

C  C    

e  0    

From A= LLT   
we have  

    

  >      

(4  
12  

#¢€  

0  

;)G  
b  

;)  12  37  
-43 = b  

C  C  

-16  -43   98 d  e  0  
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12 

37 

-43  

-16) (a2  ab,  
-43 = ab b2 + c2  
 98  ad bd + ce  

 ad  )  
bd+ce  

d?+e?+f?  

Equating co-efficiencies.  

a°=4  

⇒a=2  

:zb=12  

⇒b=6 cd 

= -16  

=d=-8  

bd + ce = -43  

~ d = 6. -8 + e = -43 

⇒-48+e = -43  

e=5  

b2 + c2 = 37  

36 +c2 = 37 >cd 

= 1  

c= 1 d?+e?+f?= 

98  

⇒ -82 = 52 + 12 = 98 

> 89 + 12 = 98  

> f?=9  

⇒[=3  
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Therefore,  

a= 2 b = 6 c = 1 d =-8.e = 5, and f = 3   ,  ,  ,  ,  

 

From LY= b  

 2 0 0) ~1) '( 2 )  

 
6 1 O Y1 = 8  
-8 5 3 1 11  

By forward substitution we have, 

2y= 2  

y,= 1  

6y+ Y1 = 8  

>6+y,=8  

>y,=2  

-8y+5y, +3y= 11 

=>-8.1+ 10 + 3y3 = 11   

Again from Lr X = y we have,  

2 6 -8) (X1) (1)  
 
 0 1 5  X2 = 2  
 0 0  3  X3 3  

By backward substitution, we have, 

3x3 = 3  
 

 

2

6  

( 

( 



 

 

 

 

 

> 2x,+ 6.-3- 8.1 = 1 

>2x,= 27  

⇒ X1 = 13.5  

Therefore, (a42,33) = (13.5,-3,1)  

This method cannot help us to solve the Problem 4.1.1, because the system matrix is not symmetric 

positive definite.  

Therefore; from this chapter I have seen that there are some problems which Cholesky method cannot 

help us to solve.  
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CHAPTER FIVE  

DISCUSSION, CONCLUSION AND RECOMMENDATION OF FINDINGS  

 5.0 Introduction  . 

This chapter is about application of Gaussian elimination and Cholesky decomposition methods  
. '  

to linear system of equations  

5.1Relationship between Gaussian elimination and Cholesky decomposition methods in solving 

linear systems of equations  

5.1.1 Applications of Gaussian elimination 1. 

Computing determinants  

To explain how Gaussian elimination allows the computation of the determinant of a square  

/  

matrix, we have to recall how the elementary row operations change the determinant: 9' 

Swapping two rows multiplies the determinant by -1  

4 Multiplying a row by a nonzero scalar multiplies the determinant by the same scalar 4 

Adding to one row a scalar multiple of another does not change the determinant.  

If Gaussian elimination is applied to a square matrix A produces a row echelon matrix B, let d be the 

product of the scalars by which the determinant has been multiplied, using the above rules. Then the 

determinant of A is the quotient by d of the product of the elements of the diagonal of B. Computationally, 

for an n x n matrix, this method needs only O(n?) arithmetic operations, while using Leibniz formula for 

determinants requires O(n!) operations (number of summands in the formula), and recursive Laplace 

expansion requires 0(2n) operations (number of sub-determinants to' compute, if none is computed 

twice). Even on the fastest computers, these two methods are  

impractical or almost impracticable for n above 20.  

2. Finding the inverse of a matrix  

A variant of Gaussian elimination called Gauss-Jordan elimination can be used for finding the inverse of 

a matrix, if it exists. If A is an n x n square matrix, then one can use row reduction to compute its inverse 

matrix, if it exists. First, the n x n identity matrix is augmented to the right of A, forming an n x 2n block 

matrix [A/I]. Now through application of elementary row operations, find the reduced echelon form of this 

n x 2n matrix. The matrix A is invertible if and only if the  
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left block can be reduced to the identity matrix I; in this case the right block of the final matrix is A, IR the 

algorithm is unable to reduce the left block to I, then A is not invertible.  

3. Computing ranks and bases  

The Gaussian elimination algorithm can be applied to any m n matrix A. In this way, for example,  

some 6x9 matrices can be transformed to a matrix that has a row echelon form like where the stars are 

arbitrary entries, and a, b, c, d, e are nonzero entries. This echelon matrix T contains a wealth of 

information about A: the rank of A is 5, since there are 5 nonzero rows in T; the vector space spanned by the 

columns of A has a basis consisting of its columns 1, 3, 4, 7 and 9 (the columns with a, b, c, d, e in T), and 

the stars show how the other columns of A can be written as linear combinations of the basis columns. This 

is a consequence of the distributivity of the dot product in the expression of a linear map as a matrix. All of 

this applies also to the reduced row echelon form, which is a particular row echelon format.  

 

4. Computational efficiency  

According to Rani, N. S, the number of arithmetic operations required to perform row reduction  

is one way of measuring the algorithm's computational efficiency. For example, to solve a system of n 

equations for n unknowns by performing row operations on the matrix until it is in echelon form, and then 

solving for each unknown in reverse order, requires n(n + 1)/2 divisions, (2n3 +3n - 5n)/6 multiplications, 

and (2n3 + 3n2 - 5n)/6 subtractions, for a total of approximately 2n3/3 operations. Thus it has arithmetic 

complexity of On'); This arithmetic complexity is a good measure of the time needed for the whole 

computation when the time for each arithmetic operation is approximately constant. This is the case when 

the coefficients are represented by floating-point numbers or when they belong to a finite field If the 

coefficients are integers or rational numbers exactly represented, the intermediate entries can grow 

exponentially large, so the bit complexity is exponential. However, there is a variant of Gaussian 

elimination, called the Bareiss algorithm, that avoids this exponential growth of the intennediate entries and, 

with the same arithmetic complexity of O(n'), has a bit complexity of On?). This algorithm can be used on 

a computer for systems with thousands of equations and unknowns. However, the cost becomes prohibitive 

for systems with millions of equations. These large systems are generally solved using iterative 

methods. Specific methods exist for systems whose coefficients follow a regular pattern.  
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To put an nXn matrix into reduced echelon form by row operations, one needs n3 arithmetic operations, 

which is approximately 50% more computation steps.  

One possible problem is numerical instability, caused by the possibility of dividing by very small 

numbers. If, for example, the leading coefficient of one of the rows is very dose to zero, then to 

row-reduce the matrix, one would need to divide by that number. This means that any error existed for 

the number that was close to zero would be amplified. Gaussian elimination is numerically stable for 

diagonally dominant or positive-definite matrices. For general matrices, Gaussian elimination is usually 

considered to be stable, when using partial pivoting, even though there are  

 examples of stable matrices for which it is unstable.  

5. Generalizations  

Gaussian elimination can be performed over any field, not just the real numbers.   

Buchberger's algorithm is a generalization of Gaussian elimination to systems of polynomial equations. 

This generalization depends heavily on the notion of a monomial order. The choice of an ordering on the 

variables is already implicit in Gaussian elimination, manifesting as the choice to work from left to right 

when selecting pivot positions.  

 

Computing the rank of a tensor of order greater than 2 is NP-hard. Therefore, if Pt NP, there cannot be 

a polynomial time analog of Gaussian elimination for higher-order tensors ( matrices are array 

representations of order-2 tensors).  

5.1.2 Applications of Cholesky decomposition  

The Cholesky decomposition is mainly used for the numerical solution of linear equations . If A is 

symmetric and positive definite, then we can solve by first computing the Cholesky decomposition, then 

solving for y by forward substitution, and finally solving for x by back substitution. An alternative way 

to eliminate taking square roots in the decomposition is to compute the Cholesky decomposition, then 

solving for y, and finally solving. For linear systems that can be put into symmetric form, the Cholesky 

decomposition ( or its LDL variant) is the method of choice, for superior efficiency and numerical 

stability. Compared to the LU decomposition, it is roughly twice as efficient  
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1. Linear least squares  

Systems of' the form AX = b with A symmetric and positive definite arise quite often in  

applications. For instance. the normal equations in linear least squares problems are of this form. It 

may also happen that matrix A comes from an energy functional, which must be positive from 

physical considerations; this happens frequently in the numerical solution of partial differential  

equations.  

 

. \  

2. Monte Carlo simulation  

The Cholesky decomposition is commonly used in the Monte Carlo method for simulating systems  

with multiple correlated variables. The covariance matrix is decomposed to give the lm.ver-

triangular L. Applying this to a vector of uncorrelated samples U produces a sample vector LU with 

the covariance properties of the system being modelled.  

The following simplified example shows the economy one gets from the Cholesky decomposition: 

suppose the goal is to generate two correlated normal variables and with given correlation 

coefficient. To accomplish that. it is necessary to first generate two uncorrelated Gaussian random 

variables and. which can be done using a Box--Muller transform. Given the required correlation 

coefficient, the correlated normal variables can be obtained via the transformations and.  

3. Kalman filters  

Unscented Kalman filters commonly use the Cholesk:y decomposition to choose a set of so-  

called sigma points. The Kalman filter tracks the: average state of a system as a vector x of length N 

and covariance as an NxN matrix P. The matrix P is always positive semi-definite and can be 

decomposed into LL'. The columns of L can be added and subtracted from the mean x to form a set 

of 2N vectors called sigma points. These sigma points completely capture the mean and covariance 

ofthe system state.  

 

4. Matrix inversion  

The explicit inverse of a Hermitian matrix can be computed by Cholesky decomposition, in a  

manner similar to solving linear systems, using operations (multiplications). The entire inversion 

can even be efficiently performed in-place. A non-Hermitian matrix B can also be inverted using 

the following identity, where BB will always be Hennitian.  
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5. Computation  

There are various methods for calculating the Cholesky decomposition. The computational complexity 

of commonly used algorithms is On) in general. The algorithms described below all involve about 

n/3 FLOPs (n3/6 multiplications and the same number of additions), where n is the size of the matrix A. 

Hence, they have half the cost of the LU decomposition, which uses 2n3/3 FLOPs (Trefethen and Bau 

1997).  

5.3 Conclusion  

Gaussian elimination, also known as row reduction, is an algorithm in linear algebra for solving a 

system of linear equations. It is usually understood as a sequence of operations performed on the 

corresponding matrix of coefficients. This method can also be used to find the rank of a matrix, to 

ca1cu1ate the determinant of a matrix. and to calculate the inverse of an invertible square matrix.  

Whereas  

Cholesky decomposition or Cholesky factorization is a decomposition of a Hermitian, positive-

definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for 

efficient numerical solutions.  

The results show that Cholesky decomposition involves a lot of computation as compared to Gaussian 

elimination in solving linear systems of equation. I therefore conclude that Gaussian elimination 

method should be used to solve linear systems of equation because it involves little computations.  

5.4 Recommendation.  

Gaussian elimination should be used over Cholesky decomposition because it involves few iterations 

compared to Cholesky decomposition.  
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