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Abstract  This paper describes Fréchet distribution as a random noise for capturing multimodalities, regime-switching and 
change-points attributed to uniformly time-varying series via causality of fluctuations, extreme values and heavy-tailed time 
series. Fréchet Mixture Autoregressive (FMAR) model of k-regime-switching, denoted by 1 2( ; , , , ) kFMAR k p p p  was 
developed and Expectation-Maximization (EM) algorithm was used as a method of parameter estimation for the embedded 
coefficients of AR of k-mixing weights and lag pk. The limiting distribution of the 1 2( ; , , , ) kFMAR k p p p  model via 
Gnedenko-Fisher Tippet limiting property was derived to asymptotically approach an exponential function. 
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1. Introduction 
Some of the problems of time series are cyclical 

fluctuation and regime-switching, full range of shape 
changing predictive distributions (multimodalities), change 
like behavior and inability to handle cycles traits that were 
characterized by the data series [2]. Some non-linear time 
series models such as Threshold Auto-Regressive (TAR), 
and Self Exciting Threshold Autoregressive (SETAR) were 
proposed contain the made mentioned stylized properties, 
but were limited to two regime-shifting [8]. Mixture 
Autoregressive (MAR) model 1 2( ; , , , )kMAR k p p p

 
proposed by [14] captured and modeled the aforementioned 
stylized traits with strictly Gaussian or normal distributed 
error term.  

The problem of regime-switching model via mixture 
models are yet to be fully and completely addressed by 

1 2( ; , , , ) kMAR k p p p  model with Gaussian random noise 
[1]. 

According to [4], structural 1 2( ; , , , ) kMAR k p p p
time-series model has been statistically deficiency due to 
inadequate to take into consideration multimodalities, large 
fluctuations, heavy-tail and non-Gaussian distributional 
random noise that are causal traits of the multimodalities and 
tenure-changing. However, the MAR model with Gaussian 
marginal  distribution is  noted to  inadequately  capture 
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extreme events that are usually the causal of distortion   
that leads to multimodalities and tenure-changing [7]. 
Consequently, the stated problem of MAR model with 
Gaussian error term would be addressed by Fréchet random 
noise, being one of the three Extreme Value Distributions 
(EVDs). In other words, Fréchet Mixture Autoregressive 

1 2( ; , , , ) kFMAR k p p p  model with Fréchet error term will 
be developed and derived as a substitute for MAR to capture 
extreme events (outliers) that are causes of large fluctuations 
in arising due to abnormal kurtosis and skewness. Hence, 
this article develops, ascertains and estimates embedded 
parameters (AR coefficients, mixing weights and Fréchet 
coefficients) via Expectation-Maximization algorithm of the 

1 2( ; , , , ) kFMAR k p p p  process with k-regime-switching. 
In addition, the limiting distribution (asymptotic property) of 
the 1 2( ; , , , ) kFMAR k p p p  model will be ascertained via 
Gnedenko-Fisher Tippet limiting behavior as well as the 
ergodic of the FMA process. The mean and variance of the 

1 2( ; , , , ) kFMAR k p p p  process will be ascertained as 
well. 

2. Literature Review 
The history of mixture time series model was originated 

and propounded by [15] in the late 1900s, when he used 
normal mixture to model outliers and employ the method of 
moments to decompose normal mixtures. He deduced that 
Autoregressive Integrated Moving Average (ARIMA), 
Self-Exciting Threshold Autoregressive (SETAR) model, 
and other nonlinear models can only depict a unimodal 
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predictive time series random noise distribution. He 
affirmed that mixture model would be needed for stylist, 
cyclical, switching tenure properties to be revealed. 
Afterwards, [3] predicted with the MAR model and 
deduced that MAR model possessed the attractive property 
in such a way that spatial attributes of the conditional 
density of its prediction contingents upon on the immediate 
past events of the process. Additionally, he maintained that 
the multiple steps’ distribution would be a collection 
(mixture) of normal distributions if and only if the source 
MAR model is a mixture of normal densities. 

However, despite propounded of all these models, no 
model studied the stationarity and ergodicity traits of MAR 
related models. It was in line of this deficiency that [8] 
propounded and affirmed the theoretical advantage of 
Gaussian mixture autoregressive (GMAR) conditions for 
stationarity and ergodicity to be met. They claimed that 
GMAR properties were straightforward to establish. In 
addition, they maintained that pth order model can be 
explicitly expressed in a (Optimal order (p) +1)– lengthy 
stationary distribution with ascertained constant mixing 
weights to connote mixture of normal probability 
distributions. 

In advancement, [7] proposed a novel nonlinear Vector 
Autoregressive (VAR) otherwise called Gaussian Mixture 
Vector autoregressive (GMVAR) model. They developed 
and explained its asymptotic theory of maximum likelihood 
whose usefulness is vital when dealing with bivariate time 
series settings. 

Furthermore, [6] proposed a new nonlinear time series 
via a vector incorporation into the MAR model called 
Vector-MAR (VAR) model otherwise known as Gaussian 
Mixture Vector Autoregressive (GMVAR) model. They 
affirmed and claimed that the GMVAR model can be 

categorized as member of the mixture VAR models because 
of its normally distributed error term, constructed and 
developed for studying nonlinear models with time-varying 
series that exhibited tenure changing traits. They maintained 
that primarily the GMVAR model differs from the variety 
of VAR models in the meaning of the mingling proportions 
that regularize the tenure likelihoods.  

[11] provided an up-to-date theoretical and 
methodological developments on finite mixture models due 
to its flexibility increasingly exploitation and applications. 
They adopted the semiparametric technique way of 
parameter estimation via the EM algorithm to carve out the 
distributional shape changing, group-structure and cluster 
analysis in the data captured to the model. Proposed models 
reviewed were formulated to capture, and correct the 
stylized properties; entire outrange of pattern switching 
distributions (multimodalities), change points like behavior, 
regime switching (capable of handling recurring periodical 
sequence), and time-varying volatilities (conditional 
means-variances), but no method/model yet to cater for 
heavy-tailed, long-memory and non-Gaussian MAR model. 
Hence, a full sketch 1 2( ; , , , )kFMAR k p p p

 model will 
be developed such that its mean and variance will as 
ascertained as well as its parameter estimation, limiting 
distribution and ergodic process. 

3. Specification of the Fréchet Mixture 
Autoregressive Model 

[10] and [13] defined a k-component of Mixture 
Autoregressive (MAR) model 1( : , , )kMAR K p p  to 
be  

( ) ( )( )( ) 11/ / −− ≤= tt tt X xF x f P F ,1 1,0 ,k  

i=1

 
  = − − 

 
 
 

− − − −
Φ∑

k tk k pk t pk

k

twk
x x xφ φ φ

σ
           (1) 

Rewriting the k-component of MAR model in (1) in Fréchet Mixture Autoregressive 1 2( ; , , , ) kFMAR k p p p  gives  
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Where, (0,1)∈pkφ , for 1, ,= k K , 1≥p . For mixing weights 1 1+ + ≈ kω ω , 0>iω , for 1= k K  (.)Φ  is the 

Cumulative Distribution Function of the standard distributions, where ( )
1

( ) & ; , exp
+      ≈ = −        

k
t t t

t t
X g x

x x

α α
α β βε α β
β

, 

with mean 
1( ) 1 = Γ − 

 
E X β

α
 and variance 

2
2 2 2 11 1 2

     = Γ − − Γ − >     
     

forσ β α
α α

. 

3.1. The Conditional Mean and Variance for FMA Model 

The conditional mean and variance for FMA model of tx  given the previous preceding values is as follow: 
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The mean of Fréchet is 
1( ) 1 = Γ − 

 
E X β

α
, therefore 

( )1 ,
1 1

1/ ( , ) ( , , ) ( , , ) 1−
= =

 
= = Γ − 

 
∑ ∑
K K

t t k k k k t k k k k
kk k

E x g α β ω α β µ ω α β β
α

                  (5) 

which relies on previous preceding values of the time series & ( , )g α β  is the PDF of Fréchet. 
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The expression 
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3.2. Parameter Estimation for FMA via EM Algorithm  
Adopting the Expectation-Maximization (EM) algorithm propounded by [10] for non-linear and regime-switching.    

Let { }1 2, , ,=  nX X X X ; { }0 1, , ,= 
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For 1, 2, , ; 0, ,= =  kk K i p  
Then, the second derivatives of individual coefficient estimated from (11) - (15) depends of setting a function tx  to be a 
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Adopting the EM algorithm for estimating the parameter space Θ  in ( )ΘL  of (10). 

(a) The first step of the Expectation-Maximization algorithm which stands for E-step, If each of the coefficient (parameter) 
in the parameter space Θ  is known, such that the unknown values of the unobserved data ( ),L tS  is then substituted 

by enforcing their means on each coefficient on the observed data Xt. Subjecting ,Ψk t  has the enforced mean on 

,k tS , then the individual probability of ,Ψk t  is the total probability of the enforced means over individual mean, as 
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For , ,1, , ; 1, , ;= = + = Ψ  k t k tk K t L n S  
(b)  The M-step where the unknown values of S is presumed via guessing and their enforced means are assumed to be the 

coefficients. The mixing weight per each regime is then estimate via  



,

1= +

Ψ
=

−∑
n

k t
k

t L n L
ω                                         (27) 

For  k pkφ , where 1, ,=  kk p  such that the estimates of parameters of these two steps are iterated until convergence is 
reached. The criterion for checking convergence was obtained by [12] as, 

 
1

5max ; , 1 10
+

−
 Θ −Θ ≥ ≤
 Θ 

s s
j j

s
j

s j                                (28) 

for Θs
j  being the jth component of Θs . 
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3.3. Limiting Distribution (Asymptotic Property) for FMA Model 

The Limit distribution (Asymptotic property) for FMA model would be based on limiting laws for Extreme Value 
Distributions stated by Gnedenko-Fisher Tippet theorem [9].  

The theorem stated that: Let { }
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i i
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According to [5], the normalizing constants of na  and nb  for Fréchet distribution are approximately 
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i i t pk i i t pk
k p k p

n x n xα αφ φ α φ φ α  
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1

0 1
1 1

exp 3 −
= =

        + + +         
∑ ∑ 

pkK

i i t pk
k p

n xα φ φ α                        (32) 

Logarithm of both sides 

( )log log
 −

Ρ ≤ = + 
 

nn n
e t e n t n

n

M b
r x F a x b

a
 

( )lim log lim log
→∞ →∞

 −
Ρ ≤ = + 

 
nn n

e t e n t n
n nn

M b
r x F a x b

a
 

( )log lim log lim
∞→ ∞→

 −
Ρ ≤ = + 

 
nn n

e t e n t n
n nn

M b
r x F a x b

a
 

0 1
1 1 1

−
= = =

   
   = + +
      

∑ ∑ ∑
pkn K

i i t pk
i k p

xφ φ α  

 0 1
1 1 1

−
= = =

   
   = + +
      

∑ ∑ ∑
pkn K

i i t pk
i k p

n xα φ φ                  (33) 

Taking exponent of both sides so as to naturalize the logarithm 

( )exp log lim exp log lim
∞→ ∞→

  −  Ρ ≤ = +         

nn n
e t e n t n

n nn

M b
r x F a x b

a
 

( )lim lim
∞→ ∞→

 −
Ρ ≤ = + 

 
nn n

t n t n
n nn

M b
r x F a x b

a
 

 0 1
1 1 1

exp −
= = =

    
    = + +
         

∑ ∑ ∑
pkn K

i i t pk
i k p

n xα φ φ                 (34) 

Which means that as →∞n , the limiting distribution of the FMA asymptotically approaches 

0 1
1 1 1

exp −
= = =

    
    + +
         

∑ ∑ ∑
pkn K

i i t pk
i k p

n xα φ φ  

3.4. Ergodic Process for FMA Model 

Strictly stationary and ergodic processes for FMA model would be ascertained via  

( ) ( )( )1
1lim max 0=→∞

  Ρ − ≥ =   
∑n

t til
l E l

n
θ θ ε  

Where, ( ) ( )( )&t tl E lθ θ  are likelihoods and expectations of likelihoods respectively. 

1 1 1 1
( ) log( ) log log

= + = = =


Θ = + + +


∑ ∑ ∑ ∑
n K K K

k k
t k t k k t k t k

k tt L k k k
l S S S

X
α β

ω α
β 1 1

log −

= =


− 


∑ ∑
K K

k k k
k t k t tk

tk k
S S X

X
α αβ

β          (35) 

( )
1 1 1 1

( ) log( ) log log
= + = = =

 
Ε Θ = Ε + + 

 
∑ ∑ ∑ ∑
n K K K

k k
t k t k k t k t k

k tt L k k k
l S S S

X
α β

ω α
β 1 1

log −

= =


+ − 


∑ ∑
K K

k k k
k t k t tk

tk k
S S X

X
α αβ

β   (36) 

But, 
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( ) ( )( ) − = t tl E lθ θ
1 1 1 1

log log −

= + = = =

  
− − −  

   
∑ ∑ ∑ ∑
n K K K

k k
k t k t k t t k t tk

t L k k k
S X S X S Xα αα β

 

( ) ( ) ( )
1 1 1 1

log log −

= + = = =

  
Ε − Ε − Ε  
    

∑ ∑ ∑ ∑
n K K K

k k
k t k t k t t k t tk

t L k k k
S X S X S Xα αα β     (37) 

From Jensen’s inequality, ( )( ) ( )ln lnΕ ≤ ΕX X  for every positively integrable X. 

So, ( ) ( )( ) − ≤ t tl E lθ θ
1 1 1 1

log log −

= + = = =

  
− − −  

   
∑ ∑ ∑ ∑
n K K K

k k
k t k t k t t k t tk

t L k k k
S X S X S Xα αα β  

 ( ) ( ) ( )
1 1 1 1

log log −

= + = = =

  
Ε − Ε − Ε  
    

∑ ∑ ∑ ∑
n K K K

k k
k t k t k t t k t tk

t L k k k
S X S X S Xα αα β  (38) 

Recall, ( ) 11
 

= Γ − 
 

t k
k

E X β
α

 

1 1

1log log 1
11= + = +

 
     ≈ − Γ − −          Γ −    

∑ ∑
n n

t
k t k k t t k

kt L t L
k

k

X
S S Xα β

α
β

α
1

11
−

−

= +

   + Γ −    
∑

kn
k k

k t t kk
kt L

S X
α

α αβ β
α

 (39) 

( ) ( )( )1
1

=
 − = ∑n

t ti l E l
n

θ θ
1 1

1log log 1
11= + = +

 
     ≈ − Γ − +          Γ −    

∑ ∑
n n

t
k t k k t t k

kt L t L
k

k

X
S S Xα β

α
β

α

 

 11
−

−
    + Γ −     

k
k k

t kk
k

X
α

α αβ β
α

                                  (40) 

( ) ( )( )1
1max =

 − ∑n
t ti l E l

n
θ θ ( ) ( )( )

1 1
log log −

= + = +

 
= − + + 

 
∑ ∑
n n

t k k
k t k k t t k t kk

kt L t L

X
S S X Xα αα β β β

β
       (41) 

since, (1) 1! 1Γ = =  

( ) ( )( )1
1max =

 − ≥ ∑n
t ti l E l

n
θ θ ε ( ) ( )( )

1 1
log log −

= + = +

 
= − + + ≥ 

 
∑ ∑
n n

t k k
k t k k t t k t kk

kt L t L

X
S S X Xα αα β β β ε

β
 

( ) ( )( )
1

log log −

= +

  
⇒ − + + ≥     

∑
n

t k k
k t k t k t kk

kt L

X
S X Xα αα β β β ε

β
           (42) 

( ) ( )( )
1

lim log log −

→∞ = +

   
⇒ − + + ≥ < ∞        

∑
n

t k k
k t k t k t kkl kt L

X
P S X Xα αα β β β ε

β
 (43) 

4. Conclusions 
The proposed model of 1 2( ; , , , )kFMAR k p p p  

being one of the prominent models for extreme valued 
mixture autoregressive was devised in order to sieze and 
objurgate stylized traits; entire greater range of 
multimodalities, regime-switching, (ability to handle 
cycles), time-varying volatilities (conditional variances), 

time-varying mixing weights with Fréchet Probability 
Density Function (PDF). Long-memory, heavy-tailed 
distributed observations are the causal that arise to outliers, 
change points like behavior, abnormal kurtosis, and 
skewness. The formulated and proposed 

1 2( ; , , , )kFMAR k p p p
 will be an ideal and substitute 

mixture autoregressive model whenever heavy-tailed 
distributed observations are the causal that arise to outliers, 
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abnormal kurtosis, and skewness brings about the 
regime-switching. 
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