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Abstract  This paper describes regime-switching, full range of shape changing distributions (multimodalities), and cycles 

traits that were characterized by time-varying series via Weibull distributional noise for time series with fluctuations      

and long-memory. We developed and established a Weibull Mixture Autoregressive model of k-regimes via 

1 2( ; , , , )kWMAR k p p p  with Expectation-Maximization (EM) algorithm adopted as parameter estimation technique. The 

ergodic process for the 1 2( ; , , , )kWMAR k p p p  model was ascertained via the maximized derivation of the absolute value 

of the subtraction of its likelihood from its expected likelihood. 
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1. Introduction 

Most economic and financial time series possesses   

traits such as regime shifting, outburst, outliers and change 

point like behavior that have be addressed by some 

non-linear time series models, such as Autoregressive 

Moving Average (ARMA), Self-Exciting Threshold 

Auto-Regressive (SETAR) and Autoregressive Conditional 

Heteroscedasticity (GARCH), and its variants. Problems of 

overall-stationarity, Conditional Heteroscedasticity, 

excessive skewness and kurtosis, non-linearity violation, full 

range of shape changing predictive distributions 

(multimodality) and ability to handle cycles are yet to be 

addressed fully in modeling fluctuating time series data [9], 

[2]. Financial, climate and economic time series are often 

driven by unimodal innovation series. This often implies a 

unimodal marginal and/or a unimodal conditional 

distribution for the time series itself. In reality, many 

financial, climate and economic time series exhibits 

multimodality either in the marginal or the conditional 

distribution. However, this article will be adopting a more 

robust marginal distributional of Weibull distributional form 

in the build-up of specifying the Mixture Autoregressive 

model denoted by 1 2( ; , , , )kMAR k p p p . The Weibull  
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marginal distribution for autoregressive regimes-switching 

model will be adopted as a substitute for widely used 

Gaussian marginal distribution because of its ability to 

capture and model contaminated series characterized    

with traits such as skewness, kurtosis, k-regimes, outburst, 

outliers and change point like behavior [6], [5]. The 

1 2( ; , , , )kMAR k p p p  with Gaussian distributional form of 

the random noise lacks the ability to fully capture and 

represent distortion caused by contaminated series with 

above said traits. Therefore, this paper develops, ascertains 

and estimates the Mixture Autoregressive of k-regimes  

with Weibull marginal distributional form, denoted by 

1 2( ; , , , )kWMAR k p p p .  

2. Literature Review 

Regime-switching generalization via Mixture 

Autoregressive (MAR) model was propounded by [10] to 

relax all these mentioned stylized properties of outburst, 

outliers and change-point like behavior characterized linear 

and non-linear time series model but yet to be addressed   

by ARMA, ARIMAX, SETAR and GARCH. Shortly 

afterwards, [1], In his work “Prediction with Mixture 

Autoregressive models” deduced Mixture Autoregressive 

(MAR) models have the attractive property that the shape of 

the conditional distribution of a forecast depends on the 

recent history of the process. It was also ascertained by [1] 

that if the original MAR model is a mixture of normal 
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distributions, then, the multi-step distributions are also 

mixtures of normal distributions.  

A pth ordered model and explicitly expressed dimensional 

stationary distribution giving a mixture of Normal 

distribution with constant mixing weights via a general 

formulation for a univariate nonlinear autoregressive model 

was presented by [6]. They presented an illustration via an 

empirical example of interest rates of ten (10) years. In 

advancement to [6], [5] proposed a novel nonlinear Vector 

Autoregressive (VAR) otherwise called Gaussian Mixture 

Vector autoregressive (GMVAR) model. They developed 

and explained its asymptotic theory of maximum likelihood 

whose usefulness is vital when dealing with bivariate time 

series settings. [3] adopted Student’s t- distribution as the 

error term for mixture autoregressive model via. Their 

intention was catering for meet inadequate ergodicity and 

stationary properties that had been a problem by Gaussian 

error term.  

Furthermore, [4] improved and examined Finite Mixture 

(FM) model accompanied with flexibility of classification of 

two parts of distributions based on scale mixtures of normal 

(TP-SMN) constitutive members. They claimed that the 

family make room for robust estimation of FM models 

development with the ability to capture and absolve 

asymmetric and symmetric, and heavy and fat-tailed 

distributions. They further maintained that TP-SMN 

provides an alternative family member to scale mingling of 

skewed normal (SMSN) family and vital traits of 

well-hierarchical expression of the family to obtain ML 

estimates of the model coefficients via an EM parameter 

estimation technique. 

From the available and reviewed literature, it was glaring 

that the 1 2( ; , , , )kMAR k p p p  has not been subjected to 

any of the candidates of the Extreme Valued Distributions 

(EVDs). In support of the need to subject the MAR model to 

any of the EVDs in order to capture fluctuation caused by 

extreme values, this article will be adopting the Weibull as 

the marginal distribution (random noise) for the MAR model 

as well as the extreme valued distributional form. The mean 

and variance of the multimodal conditional distribution   

for the 1 2( ; , , , )kWMAR k p p p will be ascertained. The 

Expectation-Maximization (EM) estimation technique will 

be adopted via E-step and M-step leading to a system of 

equation and Newton-Raphson iterative technique for 

estimating AR coefficients, and standard errors attached to 

each regime. As well as the Ergodic Process for the model. 

3. Detailed Description of the Gamma 
Mixture Autoregressive Model 

Normal mixture transitional distribution (GMTD) models 

for conditional Normal distribution was firstly introduced by 

[7], it was splinted-out and viewed as a finite (countable) 

mixture distribution by [11] as;  

1 1 2 2( ) ( ) ( ) ( )k kp x w f x w f x w f x        (1) 

where ( )p x is whole mixture regime-switching probability 

density function of identically distributed function and 

( ) ( 1, , )if x i n  are the probability density functions 

which may depend on certain parameters; mixing weight or 

weighted probability 1 20 1i kw such that w w w      

for 1, ,i n . 

A k-component of Mixture Autoregressive (MAR) model 

was defined by [9], [11] and [8] to be  
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such that the model is denoted by 1 2( ; , , , )kWMAR k p p p , where  ( ) 1/t tF x f   is the conditional cumulative distribution 

function of tX  given the immediate past information, evaluated at tx , , (0,1)pk qk   , 0 , 1pk qk   , for 

1, ,k K , , 1p q  . For mixing weights (weighted probabilities) 1 1k    , 0i  , for 1k K . (.)  is the 

Cumulative Distribution Function of the standard Weibull, where  
1

( )
& ; , exp

k t t
t t t

x x
X g x

 

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1

( ) 1E X 


 
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 
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2
2 2 2 1
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 
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. 

3.1. The Conditional mean and Variance for WMAR Model 

The conditional mean and variance for WMA model of tx  given the immediate past information is as follow: 
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which depends on immediate past values of the time series and ( , )g    is the PDF of Weibull. 
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3.2. Parameter Estimation for WMAR via EM Algorithm  

Adopting the Expectation-Maximization (EM) algorithm Let  1 2, , , nX X X X ;  0 1, , ,
T
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Allowing ( )tL   to be the conditional log-likelihood function at time " "t . The log-likelihood is then 

1
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 
  for 1, , 1k K                          (16) 

1

log log( ) k t
t k t

k

n

k t k t k t k t k
t L

S
L X XS S S S

k





 

 
    

 
 

    

1

1
log t

t
k k

n

k t k
t L

X
XS

 


 

 
    

 
    

 

1

( )
n

kt k
k kt

kt L

L
S

S
k





 

 
   
 

    

 

1

1
1

n

k kt
kt L

S


 

 
  

 
                                               (17) 

For 1,2, , ; 0, , kk K i p   

Second-order derivatives of ( )L   with respect to each of the parameter gives;  

Let the function tx  be a function of a random variable at time " "t  and counter " "j  
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1 0
( , )

0
t

t i

for i
m x j

x j


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  
So,  

, ,2

2 2
1

( )
n

K t K t

k
t L K K

S S
L


  

 
    

 
 

                                                    (18) 

,

2
1

( ) ( )
n

k t

k j
t L k

S
L L 

 

 
      

 
 

   for k j                                       (19) 

   

2

2 20
1

( ) k Kt Kt

k
t i t i

n

t L

S S
L

m x m x




  

 
 
 
 

   
 

 
2

1

1
K t

t i

n

k
t L

S

m x


 

                        (20) 

   
 

1

( ) ( ) 1
n

Kt
kkoi koj

t L t i t j

S
L L

m x m x
  

   

        for i j                        (21) 

2 2

2
1

1
( ) ( )

( )

n
k

Kt t i
ki

t L t t i

L S m xk
X m x




 

  

 
    

 
 

                                       (22) 

2 2

2 2
1

1
( ) ( ) ( ) ( )

( ) ( )

n
k

Kt t i t jki kj k
t L t t i t j

L L S m x m x
X m x m x

 


  
   

 
      
 
 


  

for i j      (23) 

 
2

1

1
( )

n

ktk k
t L k

L S 
 

 
     

 
 

                                                      (24) 

2 2
1

1
( ) ( )

n

k j
t L k j

L L Sk t 
  

 
      
 
 

  for k j                                    (25) 

 

1

( )
n

kt k
k ktk

kt L

S
L S





 

 
     

 
                                                (26)  

 
2

1

( ) ( )
n

kt k
k k

t L k

S
L L 



 

 
      

 
 

                                                 (27)  

2 2
1 1

( ) ( )
n n

kt k
k j

t L t L k j

S
L L 



    

 
     
 
 

    f o r k j                                 (28) 

Employing the EM algorithm procedure for estimating  , the parameter space via the ( )L   in equation (13). 

The first step from the acronym EM algorithm, that is the E-step, suppose the parameter space   is available, then the 

missing values for the unobserved data  ,L tS  is then replaced by impose means imposed on each parameter on the 

observed data X. Allowing ,k t  to be the imposed mean of ,k tS , then ,k t  is individual transition probability of the 

imposed mean all over the totality of the transition probability imposed expectation (that is, Bayes’ theorem) 

1

, 1

1

exp

exp

k k
k t t

k
k k k

k t
k kK

k t t
k

k k kk

X X

X X

 

 




  





  







   
   

   


   
   

   


                                 (29) 

For , ,1, , ; 1, , ; k t k tk K t L n S      

The second case (M-step) where the missing data S is assumed to be guessed and to be replaced by their imposed means on 
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the parameters. The estimates of the parameters of the parameter space,  . The estimates of the parameters   can be 

obtained via ( )L   by subtracting ,k t  from ( )L  to give,  

 
,

1

n
k t

k

t L
n L




 




                                           (30)  

Such that k pk  " "k  for that runs from 1, , kp  that could also be estimated via a system of equations (that is, the 

estimates of the parameters are then obtained by iterating these two steps until convergence) or alternatively via 

Newton-Raphson iterative procedure of all the parameter space at once.

  

   

1

21 ( ) ( )
, , , , , ,0 0

/ /
kk

r r E n L L
k k

k ki k k k ki k k       





         
    

            (31) 

3.3. Ergodic Process for WMAR Model 

Strictly stationary and ergodic process WMAR model would be ascertained via 

    
1

1
lim max 0

n
t til
l E l

n
  



 
      

 
                            (32) 

Where,     &t tl E l   are likelihoods and expectations of likelihoods respectively. 

 
1 1 1 1

( ) log( ) log log
n K K K

k t k k t k k t k t
t L k k k

L S S S X  
    

  
 

    
 
     

1 1 1 1

log log
K K K K

k t t k t k k k t k t k t k k
k k k k

S X S S X S    
   


   


                   (33) 

From Jensen’s inequality,     ln lnX X    for every positively integrable X. 

   
1 1 1 1

( ) log( ) log log
n K K K

k t k k t k k t k t
t L k k k

L S S S X  
    

 


    


     

   
1 1 1 1

log log
K K K K

k t t k t k k k t k t k t k k
k k k k

S X S S X S    
   


     


              (34) 

But, 
1

( ) 1E X 


 
   

 
 

 
1 1 1 1

( )
1

log( ) log log 1
n K K K

k t k k t k k t k k
kt L k k k

L S S S   


    

 
  

       
  

     

1 1 1 1

1 1
log 1 log 1

K K K K

k t k k t k k k t k k k t k k
k kk k k k

S S S S      
 

   

   
          

    
             (35) 

So,  

    t tl E l    
1 1 1

log log
n n n

k t k t k t t k t k t
t L t L t L

S X S X S X 
     

      

1 1 1

1 1 1
log 1 log 1 1

n n n

k t k k k t k k t k k
k k kt L t L t L

S S S    
  

     

     
            
     

            (36) 
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
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1 1

1
log 1 log 1 1
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kt L t L

S X S  


   

 
      

 
   
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 
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1
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n
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n
  


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1

1
1

1
1 log log 1
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n

 


  


  

 
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 
              (38) 

    
1

1
lim max 0

n
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l E l

n
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 
  

 
1

1
lim 1 log log 1

n

k k t t k
l kt L

P S X 

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1
1

n n

k t k t k
ki t L

S X

n

 

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  
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



 
  (39) 

4. Conclusions  

The proposed and formulated model of 

1 2( ; , , , )kWMAR k p p p  being one of the candidates 

models for extreme valued mixture autoregressive was 

designed in order to capture, and correct stylized properties; 

entire outrange of switching-patterns with Weibull marginal 

distribution(multimodalities), change points like behavior, 

regime-switching (capable of handling recurring periodical 

sequence), and time-varying volatilities (conditional 

means-variances). The model was also formulated to absolve 

heavy-tailed, long-memory and non-Gaussian MAR model 

characterized by positive and strictly count (discrete) valued 

random noises (error terms) series.  
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