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Abstract

Objectives: Calcium deregulation in diabetes mellitus
(DM) is central to the brain–heart axis pathology. This has
led to the use of medical plants in complementary medi-
cine such as Amaranthus hypochondriacus (GA). The
objective of the study was to establish the effects of
grain amaranth feed supplementation on calcium, s100al

protein and antioxidant levels on the brain–heart axis in
diabetic male Wistar rats.
Methods: The study involved six groups (n=5) with DM
being induced in 20 rats. To the diabetic rats, Group I
receivedmixtard®, Group II was positive control, Groups III
and IV received GA feed supplementation at 25 and 50%. In
the nondiabetic rats (n=10), Group V received 50% grain
amaranth while Group VI was the negative control. The
brain and heart tissues were harvested after five weeks and
processed using standard methods.
Results: Grain amaranth feed supplementation led to
improved calcium levels in DM as compared to the positive
control. This also led to increased s100a1, antioxidant
levels in the brain–heart axis during DM. This then pro-
tected the tissues against oxidative damage, thus preser-
ving tissue function and structure.
Conclusions: Grain amaranth’s actions on calcium
signaling subsequently affected s100a1 protein levels,
leading to improved tissue function in diabetes.

Keywords: calcium in T2DM; ethnomedicine in T2DM;
grain amaranth.

Introduction

Neurocardiology is characteristic of diabetes mellitus
(DM), following the deregulation of calcium signals in the
primary tissues [1–3]. In cardiac muscle, DM has been
associated with the accumulation of reactive oxygen spe-
cies which lead to oxidative stress [4]. This subsequently
predisposes the cell membrane to lipid peroxidation [5]
and disruption of cellular integrity. This would lead to
increased disruption of ion traffic, leading to dyshomeo-
stasis within the affected tissues [2, 6]. In brain tissue
calcium ions (Ca2+) are essential for neural transmitter
release from the synaptic vesicles [7], while in cardiac tis-
sue, it’s essential to sustain the power stroke, character-
istic of ventricular depolarization [8, 9], showing the
importance of this secondary messenger in neurocardiology
[1]. In DM, calcium entry in the brain and heart tissues is
disrupted, leading to poor calcium sequestration into the
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sarcoplasmic reticulum and utilization by the mitochondria
in calcium-dependent ATP production activities [10], and this
leads to tissue inefficiency, failure and apoptosis [11, 12].

In the management of DM in the brain–heart axis, the
emphasis has been placed on gene therapy, and the s100a1
calcium handling proteins have shown a lot of success [13–
15]. The s100a1 proteins are part of the s100 family proteins
which play a crucial role in calcium handling within the
tissues [15]. Once expressed significantly within the tissues
during DM, s100a1 proteins lead to improved patient out-
comes due to their direct synergistic effects on key calcium
transport proteins in the body [15–18]. On the other hand, a
majority of healthcare providers in developing countries
rely heavily on complementary medicine to manage
complications associated with DM [19]. Amaranthus
hypochondriacus (amaranthus, GA) is one with an inter-
national reputation [20] since it is a major vegetable food
source in many African communities and it’s commonly
known as the ‘Prince-of-Wales feather’ [21]. Amaranthus
has been shown to improve on cardio-pulmonary function
due to its antioxidant properties [22, 23], bone density due to
its high calcium content [24, 25] and hypoglycemic and
hypocholesterolemic effects due to its phytochemical com-
pounds [26, 27]. Also, processing of amaranthus leads to
increased nutrient bioavailability [28], and recent findings
[29] demonstrated the ability of GA to improve calcium ho-
meostasis in the liver and thekidneysduringDM. Information
on the role of GA in the brain–heart axis continues to be
scarce, althoughmany advances in complementarymedicine
promoting theuseofmedical plants suchasvegetableswhich
have hypoglycemic effects [30] continue to gain momentum.
The objective of the study was to gain basic insights into the
actions of grain amaranth on calcium and s100a1 protein
homeostasis during DM in male Wistar rats.

Materials and methods

Study design

This was an experimental study in which 30 adult male rats, two
months of age were randomly assigned to six study groups each
consisting of five animals. Rats in groups I–IV were diabetic and the
research model was a nicotinamide/streptozotocin (STZ) model of DM
[31, 32], and the induction protocol was as described previously [29,
33]. In brief, DM was induced (n=20 rats) using STZ (60 mg/mL) and
nicotinamide (120 mg/kg) intraperitoneal as described previously and
thosewith a hyperglycemic index ≥250mg/dLwere used for this study.
Group I was treated with Mixtard® [34]. Group II the positive control
(DM and no treatment on regular rat pellets), Groups III and IV were
provided with feed supplementation at 25 and 50% w/w GA respec-
tively, while Group Vwas nondiabetic and was providedwith 50%GA

feed supplement (comparative control). Group VI was the negative
control (nondiabetic and on regular rat pellets).

Grain amaranth processing

Thiswas done as previously described [29]. In brief,A. hypochondriacus
was processed to create popped grain amaranth by heating at 260 °C for
5 s. Thiswas weighed andmixedwith regular rat feed tomake 25%w/w
and 50% w/w for low and high GA feed supplementation respectively.
Water was added to the mixture to moisten it and pellets were formed
anddried at for 24h in anoven (WTEBinder, type 19240300002000, no.
950228, Germany) for preservation and stored in a sac at room
temperature.

Laboratory analysis

At the end of five weeks, animals were euthanized using sodium
pentobarbitone injected intraperitoneally as previously described [29].
The brain and heart were harvested from each rat and placed in sterile
sample bottles. Samples for biochemical analysis were subsequently
homogenized in 1M phosphate buffer saline, centrifuged at 3,000 rpm
for 5 min and the filtrate was collected into sterile Eppendorf tubes,
which was stored in a refrigerator at −20 °C. Heart samples for histo-
logical analysis were placed in 10% neutral buffered formalin, while
the brain was placed in bouin’s solution.

Determination of tissue calcium: This was done using an atomic
absorbance spectrometry (AAS) method [35]. The AAS (Perkin-Elmer,
model GBC932AA, USA) was set up according to manufacturer’s rec-
ommendations, and an equation from the standard curve (absor-
bance=450 nm) was used to determine calcium concentrations for
each on all samples.

Determination of s100a1 levels: This was done by using the ELISA
standard protocol [36]. The s100a1 protein was determined using a
commercial test kit (Santa Cruz, Biotechnology, USA, Texas) following
the manufacturer’s recommendations. The s100a1 variant used in this
study was cataloged SC-71992 with a Gene ID of 6271 (1q21.3) in
humans and that of 20193 (3F1) in rats. The optical density was
measured at 450 nm for the s100a1 proteins [37] using an automatic
ELISA plate reader (Biotech, USA) as previously described [29].

Determination of oxidative and antioxidant activity: This was done as
previously described [29]. Briefly, 1 M of MDA reacts with 2M of
2-thiobarbituric acid (TBA) to yield a chromophore, and the absorbance
was taken at 540 nm according to standard methods [38] using trichloro
acetate, TBA, hydrochloric acid and sodium hydroxide. Glutathione
peroxidase (GPx) activity was determinedmeasured using themethod of
Yutaka [39] following the formation of GSSG using a coupled enzyme
system with glutathione reductase (GRx). This was important since the
formation of glutathione (GSSG) is catalyzed by GPx coupled with the
recycling of GSSH back to GSH using GSSG-R (glutathione reductase).
NADPH is oxidized to NADP+. The change in absorbance due to NADPH
oxidation was monitored and was indicative of GPx activity [40].

After making the reaction volumes, the mixture was vortexed at
room temperature, incubated at 37°C for 15 min in a water bath. The
activity of the samples was enhanced by adding 5% TCA. The samples
were then centrifuged at 3,000 rpm for 5 min. The supernatant was
collected and transferred into 96-well plates and an ELISAplate reader
was used as described previously [39].
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Histopathology determination: Sections of the brain and heart tissue
blocks of each rat were analyzed according to a systematic random
embedding, random sectioning and sampling method [29, 41].
Microscopic changes were assessed using light microscopy and
described descriptively.

Data analysis

Quantitative data was generally being expressed as mean ± SD using
Graph Pad Prism Version 6. ANOVA was conducted to determine
group differences and this was followed by a Turkey’s test to deter-
mine sources of variation against within experimental groups. Data
from the histological analysis was summarized and presented in
paragraphs. Photographs from some samples were also included.

Results

Calcium in brain and heart tissues following
grain amaranth administration

In the brain and the heart, mean calcium concentration was
found to be 0.60 ± 0.31 mg/dL and 0.60 ± 0.21 mg/dL as well
as 0.41 ± 0.25 mg/dL under low and 0.38 ± 0.16mg/dL under
grain amaranth supplementation at low (25%) and high
(50%) concentration respectively. No significant differences
were seen (p>0.05) in the brain samples from individual
groups; however, significant differences were shown to exist
(Table 2) and this wasmainly due to the GA supplementation
administration groups as shown in Table 1.

S100A1 protein levels in brain and heart
tissues

High levels of s100a1 proteinswere seen in the brain during
DM higher than those in the control group. Grain amaranth
significantly lowered levels of s100a1proteins in the brain

at higher concentrations (Table 2). On the other hand,
levels of s100a1 proteins in the heart were too low in DM
while these were elevated following grain amaranth sup-
plementation as shown in Figure 1.

Malondialdehyde and glutathione
peroxidase levels in brain and heart tissues

In both the brain and cardiac tissues, levels of MDA were
elevated and this was associated with low GPx content in
the positive control and thiswas characteristic of DM.Grain
amaranth feeds supplementation in diabetic rats was
associated with elevated GPx levels and low MDA levels
(Figure 2). Furthermore, no significant differences (p>0.05)
were found in MDA content, while significant differences
(p<0.05) were associated with GPx content between the
normal rats on 50% amaranth and the negative control as
shown in Table 2.

Structural changes in the brain and heart
tissue following grain amaranth
administration

Severe vacouations were seen in the brain tissue of the rats
of the positive control and these vacouations were widely
distributed in the brain tissue of the cerebral cortex.
Treatment with Mixtard® and 25% GA supplement led to
mild vacouations in the neural tissue in the presence of DM.
No vacouations were associated with DM + 50% GA as
wells in the normal rats without GA as shown in Figure 3.

Mild myocardial atrophy in the positive control was
detected though no significant lesions were in DM + GA as
well as the nondiabetic rats as shown in Figure 4.

Discussion

The study showed that calcium deregulation in the tissues
is a hallmark of brain–heart pathology during DM and this
was in agreement with previous findings [1]. An onset of
tissue pathology would lead to reduced neural [33] and
cardiac function [11, 12]. Bearing in mind that grain
amaranth has a high calcium content [24, 25], findings in
this study show that the brain and heart tissues can
metabolize calcium better under feed supplementation,
especially following GA feed processing which has been
associated with increased on nutrient bioavailability [28].
However, relatively higher levels of calcium were seen in
the brain of the DM untreated group (positive control)

Table : Mean calcium concentrations in brain and heart tissues in
male Wistar rats.

Experimental groups N Mean ± SD mg/dL

Brain Heart

DM + Mixtard®  . ± .a
. ± .a

Positive control  . ± .a
. ± .b

DM + % GA  . ± .a
. ± .c

DM + % GA  . ± .a
. ± .c

Normal + % GA  . ± .a
. ± .a

Negative control  . ± .a
. ± .c

Tukey’smultiple comparison’s test conductedonbrain andheart samples
for each tissue amongst their experimental groups. Different superscripts
(a, b, c) indicate p<.; DM, diabetes mellitus; GA, grain amaranths.
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comparable to the negative control (healthy animals). This
may be explained by the fact that the brain needs Ca2+ for
neurotransmitter release and in DM, neural Ca2+ overload
in the cytosol occurs [2, 42] and this was similar to our
findings in the positive control. This is important since
elevated calcium levels are associated with brain lesions
[43], thus suggesting the protective effects of GA in this
particular study. Neural adaptation is triggered by calcium
signals [44], and in synaptic activity Ca2+ signals for the
release of neurotransmitters [45]. Improved calcium ho-
meostasis is associated with improved glucosemetabolism
in the cells [12] since failure of the brain-centered glucor-
egulatory system (BCGS) is responsible for the develop-
ment of DM in neural tissue [42], demonstrating the
importance of GA in this study. Increased calcium meta-
bolism was also associated with increased s100a1 protein
content in the tissues following grain amaranth supple-
mentation in DM. These findings suggest that grain
amaranth actions in heart and brain tissues are synergistic

to increased s100a1 protein expression, thus rescuing tis-
sues from calcium deregulation, and this was in agreement
with our previous findings [29], showing that observations
in the study would be generalized to other body organs.
This would subsequently lead to improved calcium trans-
port in and out of the affected tissues, thus improving the
prognosis of affected tissues [16–18]. This offers the basis
for its rapidly growing international reputation as an eth-
nomedicinal plant in the management in DM [30, 46, 47]
since improved cellular calciummetabolism would lead to
balanced ATP production [9, 10].

The antioxidant activity in DM was enhanced by grain
amaranth feed supplementation and this was dose-
dependent. Findings in the study are in agreement with
previous studies which have shown that grain amaranth
has high antioxidant status [22, 23], thus leading to pres-
ervation of tissue calcium handling proteins such as the
s100a1 proteins. This synergistic action is essential to
guarantee tissue function in affected tissues in DM, thus

Table : p-Values showing multiple comparisons in experimental groups in brain and heart tissues for calcium, sa, MDA and GPx.

Group comparisons Brain Heart Brain Heart Brain Heart Brain Heart

Calcium Sa MDA GPx

DM + mixtard vs. positive control . . . <. . <. . .
DM + mixtard vs. DM + % GA . . <. <. . . . .
DM + mixtard vs. DM + % GA . . <. . . <. . <.
DM + mixtard vs. normal + % GA . . . <. <. <. <. <.
DM + mixtard vs. negative control . . . . <. <. <. <.
Positive control vs. DM + % GA . . <. . . <. <. .
Positive control vs. DM + % GA . . <. <. <. <. <. <.
Positive control vs. normal + % GA . . . <. <. <. <. <.
Positive control vs. negative control . . . <. <. <. <. <.
DM + % GA vs. DM + % GA >. >. . <. . . . .
DM + % GA vs. normal + % GA . . . <. <. <. <. <.
DM + % GA vs. negative control . . . <. <. <. <. .
DM + % GA vs. normal + % GA . . <. <. <. <. <. <.
DM + % GA vs. negative control . . <. . . . . .
Normal + % GA vs. negative control . >. . <. . . . <.

Figure 1: Diabetes was associated with low
s100a1 levels in the brain while grain
amaranth feed supplementation increased
its expression in the brain (A) and the heart
(B). Under physiological situations, grain
amaranth feed supplementation was
associated with increased s100a1 protein
levels in the brain-heart axis.
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showing the relevance of grain amaranth in neuro-
cardiology. Findings in the study re-emphasis the ability of
vegetables to affect key cellular functions [30] and in
particular, improved antioxidant activity during DM,
which is crucial for improved gene expression. Further-
more, pathological lesions in DM rats were minimized as

compared to the positive control in both the brain. In the
cerebral cortex, there was diffuse tissue degeneration in
DMwhichwas associatedwith the high calcium levels, and
these effects were reduced by insulin therapy and GA
supplementation. It has been shown that DM leads to ce-
rebral cortex degeneration leading to electro-physical

Figure 2: Diabetes led to an increase in
malondialdehyde (MDA) in both the brain
(A) and the heart (B), while grain amaranth
feed supplementation reduced these levels.
On the contrary, glutathione (GPx) levels
increased with grain amaranth (C) and (D)
demonstrating the strong antioxidant
status in grain amaranth which helps to
offer tissue protection in diabetes.

Figure 3: Neurological changes following
grain amaranth supplementation in
diabetic wistar rats. Photomicrographs in
experimental animals showing histological
lesions in the brain. A = treatment with
Mixtard® in diabetes; B = positive control;
C = 25% Grain amaranth with DM;
D = Negative control. Bvs = blood vessel;
N = Nuclei of cell body; V = Vacoulation in
neural tissue; H = hemorrhage. Diabetes
was associatedwith severe vacoulations (A)
and the severity of the vacoulations
reduced in diabetic rats under grain
amaranth feed supplementation.

Kasozi et al.: Improved calcium signaling in the brain–heart axis 5



(including calcium) and structural properties dysregula-
tion [48]. GA due to its physio-chemical and phytochemical
properties helps to replenish the tissue thus improving on
its architecture. This subsequently leads to improved
neural function due to improved tissue protection [49]. Car-
diac tissue improved followingGAsupplementationdue to its
antioxidant properties. Tissue protection offered by the
increased antioxidant action was able to protect affected
tissues, thus improving on their prognosis, which is in
agreement with previous findings [22–27]. Primary observa-
tions fromour study indicate that improvedcalciumsignaling
is central to the management of DM due to improved physi-
ological function in the brain–heart axis, thus offering a
rationale for the community usage of grain amaranth in DM.

Conclusion

Grain amaranth was associated with increased s100a1 pro-
teins and improved calcium levels in the brain–heart axis
during DM. Increased tissue proteins were further protected
by the increased antioxidant activity, thus leading to an
improved prognosis in the brain–heart axis during DM.
Prospective studies on other secondary messengers would
yieldmore information that would guide therapy since these
were beyond the scope of the current study.
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