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Abstract

In this paper, we developed and applied a stochastic model based on a

discrete-time semi-Markov chain approach and its generalizations to

study the high-frequency price dynamics of traded stocks. Semi-

Markov is a stochastic process that generalizes both the Markov

chain and the Markov renewal processes. It is well known that the

performances of the stock market or factors that move stock prices are

technical factors, fundamental factors, and market sentiments. The

discrete-time semi-Markov model is applied on stock values of capital

assets for both opening and closing prices for a specific period to

predict the long-term behavior of the stock value price movement for

the three states (bull market state, bear market state, and stagnant

market state) for the process. The daily closing prices of stocks depend

on the subsequent daily closing prices and there is a hope of

recovering for capital asset stocks after the experience of

unprecedented losses in stock values during the previous years. From

the long run probabilities, the results showed that the probability of

stock prices either increasing or decreasing is higher than being stable.

So there is a high likelihood that stocks will not be stable in the long

run. Thus, it is an indication that there is a high tendency for stock

prices to fluctuate in the future than being stable.

1. Introduction

A stock market is an organized and regulated financial market where

securities are traded at prices governed by the forces of demand and supply.

Our main aim is to forecast the direction of future stock price patterns so that

investors and traders can buy and sell stocks at lucrative prices. Thus,

professional traders use fundamental and/or technical analysis to analyze and

make investment decisions about stocks. Besides, in a bull market, since

there are a low supply and high demand for securities, investors and traders

have faith that the uptrend of stock prices will continue for over a long

period and thus will be willing to sell a few and buy more securities.

Conversely, in a bear market, there are low demand and high supply for

securities which cause a negative sentiment in the market, leading to high
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chances for investors and traders to incur great losses since prices are

continuously losing value. A stagnant market is when the stock market is

neither increasing nor decreasing. When stock prices are initially in a bull

state where it will remain there for a random amount of time having mean,

then it will go to bear state where it will remain there for a random amount

of time having a mean, then it will go to a stagnant state where it will remain

for a random amount of time having a mean, then back to bull state again and

so on. The process is a random variable if it is at a given state before making

a move to a new state with mean and variance. Stock prices can move from a

bull market state to at least one of the other states but cannot return to a bear

market state thus leading to a transient period in the stock exchange. On the

other hand, stock prices can move from a bull market state to at least one of

the states and have at least one path to return to a bear market state causing a

recurrent period in the stock exchange.

Semi-Markov processes are stochastic processes that generalize at

the same time both Markov chains and renewal processes. In stochastic

processes, Markov chains are crucial concepts to be considered. It satisfies

the Markov property, meaning that knowing the current state of the system is

sufficient to predict the future and so, the past and the future are not

dependent on each other. Thus, no additional information or past data is

needed to make predictions of the possible future after getting the current

state of the process (Shehu et al. [8]). In forecasting the conditional

probability of future events, the Markov chain being a stochastic process

does not depend on past events or states but present states of the process. It

is a mathematical system that experiences transitions from one state to

another, according to some rules of probability. Mathematically, Markov

chains are composed of state spaces, and these state spaces comprise vectors

whose elements are all possible states of a stochastic variable due to the

current state of the variable and transition matrix. The transition matrix

incorporates the probabilities that variables will either remain or transit from

one state to another. To compute probabilities of variables switching at the

end of a particular state after n discrete partitions of time, there is a need to

multiply the present state of the vector with transition matrix raised to power
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n. There are quite different ways in terms of dealing with Markov chains and

the renewal process depending on the nature of the parameters involved

and areas of application. The methods are discrete-time Markov chains or

continuous-time Markov chains. The former is when variable changes occur

at a particular state and the latter is when variable changes are continuous.

The changes of the system and probabilities associated with various state

changes are characterized by a state space. A transition matrix relating the

probabilities of particular transitions, and an initial state across the state

space of the conditional probabilities for Markov chains are considered as

transition probabilities. Markov chains can also have n-step transition

probabilities besides one-step, in which it is the conditional probability that

the process will be in state k after n-steps provided that it begins in state

j at time s. The Markov renewal process can be a random process that

generalizes the notion of Markov jump processes. The semi-Markov model

attempts to generalize the Markov process by allowing a generally

distributed holding time at each state. The model can help us know the result

of how stock prices will move and be able to predict the future direction of

stock price patterns of capital assets. One of the merits that the semi-Markov

process has is that, for modeling the time to have a transition from one state

to another, it allows the waiting time distributions. Markov models have

elapsed on the waiting time distribution from one state to another and should

be described by using a memory-less distribution (Norris and Norris [6]).

2. Literature Review

The stock market is still an integral part of any economy for

developmental purposes. Variation in the stock market influences the health

of any economy, personal and corporate financial lives. It is risky to invest in

stock markets as stock prices are difficult to forecast if proper and rational

decisions are not taken into consideration. Therefore, smart and reliable

models are needed in predicting stock price movements in stock markets for

proper decision-making and profitable opportunities. The problems for stock

market volatility, seasonality, and time dependence, the rest of the market,

and economies have been a struggle that induced researchers both in
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academia and industries. The semi-Markov process is applied in many fields

of study and it is not something new in finance (Agbam and Udo [1]). (Ky

and Tuyen [5]) did a study on the Markov-fuzzy combination model for

stock market data prediction. The Markov model pinpoints the patterns of

the data and predicts future states. According to the experimental results of

their proposed model, it shows that other forecasting models did not perform

better than their model. Odhiambo et al. [7] modeled the effect of COVID-19

pandemic on Kenyan Gross Domestic Product (GDP) contributors. In

addition, by looking at the proportion of the contributors at a steady-state,

they found the ultimate effect of the pandemic to the top five key sectors

of the Kenyan economy that contributes massively to GDP growth.

The outcome of their study should help global economies to have an

understanding of varieties of economic stimulus planning packages to

launch in the ‘hard-hit’ sectors by reducing potential economic recessions.

Anthony and Othieno [2] applied the semi-Markov model for a portfolio of

consumer loans and decided that they do not only respond to better credit

risk modeling but go more than predicting for periods beyond the required

regulatory minimum of three years. Furthermore, semi-Markov framework

gives a more accurate prediction of default probability, the extent of

exposure and hence facilitates adequate capital provision before the

occurrence of the loss event. The main advantage of semi-Markov is that it

allows the use of any type of waiting-time distribution function for modeling

the time of switching systems from one state to another. D’Amico and
Petroni [4] did a study for traded stock price returns by using a semi-Markov

model. They employed the method of discrete-time homogeneous semi-

Markov process and Markov chains for intraday and overnight returns,

respectively. The use of volatility autocorrelation function, first passage time

distribution, and non-parametric test of the hypothesis have been proposed to

test the semi-Markov hypothesis. Thus, having shown through Monte Carlo

simulation that the semi-Markov model produces better results than the

simple Markov model, it was finally concluded that in modeling stock prices,

the semi-Markov approach is better. D’Amico et al. [3] studied the high

frequency dynamics of financial volumes for traded stocks using the semi-



M. A. Jallow, P. Weke, L. A. Nafiu and C. Ogutu6

Markov approach. The results of the data have been obtained from the Italian

stock market from the first of January 2007, until the end of December 2010.

They advanced the usage of weighted-indexed semi-Markov chain models,

for modeling high-frequency financial volumes. The weighted-indexed semi-

Markov chain model was used to describe the intraday logarithmic change of

volumes by assumption. Moreover, based on their assumptions given above,

they have shown that the model can reproduce stylized facts about intraday

periodicity, the dependence of time series, and volume asymmetry. Shehu et

al. [8] studied high-frequency capital asset price dynamics of traded stocks

by using a semi-Markov model. The method of the Markov process to

describe the state of systems and the state transitions was proposed. The

method of negative exponential distribution has been used in modeling the

continuous-time stochastic process to model the time of occurrence of events

in the process. They developed the semi-Markov model by employing

transitions, exponential distribution, and interval transition probabilities. The

exponential holding time to describe the holding time in each state before

making a transition to another state was used and chi-square was employed

to test for independence of the closing prices. D’Amico and Petroni [4]

discussed traded stock price changes by using a semi-Markov model with

memory. They employed the method of discrete-time homogeneous semi-

Markov model for intraday returns which depends on memory index. The

memory index was introduced due to periods of high and low volatility in

the market. The index semi-Markov model for price returns was proposed

to overcome the problem of low autocorrelation. They have shown that

the transition probability function of the semi-Markov process satisfies a

renewal-type equation. Then, they concluded that the semi-Markov kernel is

influenced by the past volatility, in which the past volatility, which has been

used as a memory index produced well the behavior of the market returns. It

has been shown that semi-Markov models have been developed in predicting

stock price movements in stock markets in the form of bull, stagnant, or bear

market. The trend of the stock market study is a global phenomenon and the

mathematical formulations are not something new.
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3. Methodology

3.1. Discrete-time semi-Markov chains mathematical preliminaries

Semi-Markov process is a generalization of the Markov process and

renewal process. Thus, Markov process is a sequence of discrete random

variables  szzz ...,,, 10 such that the conditional distribution property of

1sz given that the sequence is dependent only on the value of sz but not on

....,,, 110 szzz  Meaning that for any set of values khg ...,,, in the discrete

state space, we have

 jZgZkZPp ssjk   ...,,01

 jZkZP ss  1 for .3,2,1, kj (3.1)

The probability of transiting to a future state does not depend on the past

state but the current state of the system. The entries jkp for the matrix

P of the process are the transition probability matrices. If the transition

probability depends on time, it is non-homogeneous otherwise it is

homogeneous. We are dealing more with transition probabilities that depend

on time. Given that      nsZsZsZ ...,,, 21  exhibits a semi-Markov process

for the random variables nsss ...,,, 21 for ,Ts   consider the stochastic

process,  ,, ss TK ...,2,1,0s as a homogeneous Markov chain with

phase space  ,,0 X where  dx ...,,3,2,1 having an initial

distribution

 00 , XjKPp jk  for ,Xj 

and for ,, Xkj  0, ts in the transition probabilities. By referring to the

semi-Markov chain that is associated with the Markov renewal chain, we

have

    .0,  sZsK sN (3.2)

In the semi-Markov process, Z is representing the state space as the set

of all possible values of j, k and jkp is for the probability that the process
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in state j transits to state k. We will be describing the state transition

probabilities by using a semi-Markov process. At a time, due to the nature of

the stock exchange, it is in our interest to analyze how movements of stock

prices happen in-between states and how long it takes for the stock price to

remain within a state before making a move to another state (holding times).

Thus, we let jkp probability that the stock prices will transit to state k

given that they are in state j. The probabilities of the transition satisfy that

 3 ,0,1
k jkjk pp where .3,2,1, kj

The holding time as a random variable having a positive value is

governed by a holding time distribution function jkf for a state transition

from j to k as:

    ,3,2,1;3,2,1,;  rkjrfrTP jkjk (3.3)

where j, k are the states and r is the time. We have to identify three holding

time distributions in order to describe the semi-Markov process by adding a

fixed value s to the state transition probabilities. Let jkf be the cumulative

probability distribution of jkT in which jkT is synonymous to each value of

3,2,1k such that

     



s

r
jkjkjk rftTPsF

0

, (3.4)

where jkF is the complementary probability distribution of .jkT  We can let

n to be the waiting time of the stock price in state j before taking a transition

out of state j and m to be the probability distribution function of the waiting

time n. Then

     



3

1

.
k

jkjk rfprmPrm (3.5)
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The cumulative probability distribution for the waiting time is given as:

     



s

r
jj rMsnPrM

1

 



3

1k
jkjk rFp (3.6)

and the complementary cumulative probability distribution for the waiting

time is also given as:

     



s

sr
jj rmsnPsM

1





3

1

.
k

jkjk Fp (3.7)

We can let  sjk to be the probability that the stock price in state j will

now transit to state k in some days t. Then,

        
 


3

1 1

.
l

s

r
lkjljljjkjk rsrfpsMs (3.8)

3.2. Transition matrix and steady-state probabilities model assumptions

(1) The direction and movement of capital assets as stock prices are

random variables in between bull, bear, and stagnant markets that are time

parameters indexed in a stochastic process.

(2) The probability that the stock price in a bear market will either transit

to a bull or stagnant market is not independent of the current state of a bear

market in a midst unit (within a day).

(3) Moving from state j to at least one of the state k but cannot return to

state j, then it is transient.

(4) Moving from state j to at least one of the state k and have at least one

path to return to state j, then it is recurrent.
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(5) A state at which the stock price values rise from the previous state is

the bull market state.

(6) A state at which the stock price value is stable from the previous

state is the stagnant market state.

(7) A state at which the stock price value drops from the previous state is

the bear market state.

The three states for the process to depict stock price movements of

capital assets as a bull, bear and, stagnant market states are as follows:

State 1. Bull market state.

State 2. Bear market state.

State 3. Stagnant market state.

Below are the possible transitions between the states:

Figure 1. State transition diagram for stock price movement.

where

11p probability of stock prices moving from bull market state to bull

market state,
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33p probability of stock prices moving from stagnant market state to

stagnant market state,

22p probability of stock prices moving from bear market state to bear

market state,

13p probability of stock prices moving from bull market state to

stagnant market state,

31p probability of stock prices moving from stagnant market state to

bull market state,

32p probability of stock prices moving from stagnant market state to

bear market state,

23p probability of stock prices moving from bear market state to

stagnant market state,

12p probability of stock prices moving from bull market state to bear

market state,

21p probability of stock prices moving from bear market state to bull

market state.

The matrix for the state transition probability of the process is given as

follows:

 
      ,131211

11
11 nnn

n
p


 (3.9)

 
      ,131112

12
12 nnn

n
p


 (3.10)

 ,1 121113 ppp  (3.11)

 
      ,232221

22
22 nnn

n
p


 (3.12)

 
      ,232221

21
21 nnn

n
p


 (3.13)
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 ,1 222123 ppp  (3.14)

 
      ,333231

33
33 nnn

n
p


 (3.15)

 
      ,333231

31
31 nnn

n
p


 (3.16)

 ,1 333132 ppp  (3.17)

where

  11n number of times being in bull state at day s to bull state at day

,1s

  12n number of times being in bull state at day s to bear state at day

,1s

  13n number of times being in bull state at day s to stagnant state at

day ,1s

  21n number of times being in bear state at day s to bull state at day

,1s

  22n number of times being in bear state at day s to bear state at day

,1s

  23n number of times being in bear state at day s to stagnant state at

day ,1s

  31n number of times being in stagnant state at day s to bull state at

day ,1s

  32n Number of times being in stagnant state at day s to bear state at

day ,1s

  33n number of times being in stagnant state at day s to stagnant state

at day .1s
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The transition probability matrices are arranged in a matrix form as:

.

333231

232221

131211


















ppp

ppp

ppp

P

The steady-state probability is:  ,3,2,1 LLL where

L1 The long run probability of the increasing stock price.

L2 The long run probability of the decreasing stock price.

L3 The long run probability of the stock price being stable.

We can compute the steady-state probability k given the equations:

,1
3

1 


k k

,3,2,1,, 
M

j jkjk kjp

....,,00 Mkk 

In matrix notation, we can have .TT P 

Now to solve for the steady-state probabilities, we can have TT P 

and   3
1

:1
j j

   ,321

333231

232221

131211

321 

















ppp

ppp

ppp

(3.18)

,1313212111  ppp (3.19)

,2323222121  ppp (3.20)

.3333232131  ppp (3.21)
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By collecting like terms and factorizing,   3
1

,0
j j 3,2,1j and

,10  j we have

  ,01 313212111  ppp (3.22)

  ,01 323222121  ppp (3.23)

  .01333232131  ppp (3.24)

The steady-state probability given the solution set of equation (3.22) to

equation (3.24) is

 .,, 321 

Thus, the long-term probability will be considered as:

,lim s
n P (3.25)

where

sP is the long-term transition probability from state j to k.

4. Results

4.1. Periodic trends for the stock price value

The stock prices for both opening and closing prices for the year 2019

are applied on the model. The stock market does not operate on public

holidays and weekends. The closing prices are been grouped according to the

market states as given in the table below.

Table 1. Transition count for the three states

Transition count Market states

At least 100 Bull market state (state 1)

Between 98-99.99 Stagnant market state (state 3)

At most 97.99 Bear market state (state 2)

Table 1 describes the stock price movement as bull market state, bear

market state, and stagnant market state. We can compute the probabilities of
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stock prices increasing, decreasing, and being stable, and we can forecast the

future directions of stock price values using the equations for the transition

probabilities.

Table 2 below shows stock price values for twelve months for the year

2019. The data is categorized into three states: bull, bear, and stagnant

market states. The transition count for the stock prices can be estimated

using relative frequency.

Table 2. Transition count for the year 2019 stock prices

State j/State k Bull state Bear state Stagnant state Row total

Bull state 94 3 0 97

Bear state 3 80 3 86

Stagnant state 0 3 64 67

Column total 97 86 67 250

The transition probability matrix is estimated using equation (3.9) to

equation (3.17) and we have

.

96.004.00

035.093.0035.0

003.097.0
















P

The steady-state probabilities are computed given the solution set of

equation (3.22) to equation (3.24) as

 ,2877.0,3288.0,3836.0

where

,3836.01 

,3288.02 

.2877.03 

The long-term probability matrix is estimated using equation (3.25) as

.

2877.03288.03836.0

2877.03288.03836.0

2877.03288.03836.0
















sP
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4.2. 2 test of independence for closing stock prices

We want to test whether the closing prices are independent of each other

using a chi-square distribution. The chi-square test of independence is

 
,

2
2

i

ii

E

EO 
 (4.1)

where

iO Observed frequencies,

iE  Expected frequencies.

Using equation (4.1), we can have

     
,03.138

00.26
00.260

37.33
37.333

64.37
64.3794 222

2
1 

     
,02.131

05.23
05.233

58.29
58.2980

37.33
37.333 222

2
2 

     
.46.161

96.17
96.1764

05.23
05.233

00.26
00.260 222

2
3 

Table 3. Test of independence for closing stock prices

States 2 p-value

Bull state 138.03 0.001

Bear state 131.02 0.001

Stagnant state 161.46 0.001

The results in Table 3 showed that the daily closing prices for all the

three states were not independent  .05.0p  It means that the daily closing

price is dependent on the subsequent daily closing price. The transition

probability matrix  P and long-term probability matrix  sP as well as the

steady-state probabilities give the probability of stocks being in the bull

market state, bear market state, and stagnant market state. It showed that
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there is the hope for recovering Kenyan capital asset stocks that are listed at

Nairobi Securities Exchange, after the experience of unprecedented loss in

the stock value during the past years.

Thus, since the long run probability of the capital asset stocks for bull,

bear, and stagnant are 0.3836, 0.3288, and 0.2877, respectively, there are,

respectively, 38%, 33%, and 29% higher likelihood for stock prices to be in

bull, bear, and stagnant market states in the long run. The probability of the

stock to either increase (38%) or decrease (33%) is higher than being stable

in the long run. This means, there will be more fluctuation at 5% in terms of

stock price increment or decrement at Nairobi Securities Exchange and

fewer chances for stock prices to be stable in the long run. This is a strong

indication that stock prices will not be stable in the long run.

5. Conclusion

The data of stock prices for the year January 2019 to December 2019

used have been re-sampled into a 1-day frequency. Apart from public

holidays and weekends, Nairobi Securities Exchange fixes opening prices of

stocks at a random time after 9:30, then trading continues up to 2:30 pm. In

the minute there are no transactions, the opening prices remain the same

unless trading of securities occurs between buyers and sellers. The stock

value of capital assets for both the opening and closing prices for the year

2019 revealed that Nairobi Securities Exchange does not operate on public

holidays and weekends. The stocks of closing prices have been grouped into

different categories as bull, bear, and stagnant states, and the holding time in

each state before transiting into another state follows a Poisson process or

distribution. The closing prices of the stocks for each of the states produce a

p value that is less than the significant level of (0.05) and thus, closing prices

were dependent. Meaning, the daily closing prices of the stock depend on the

subsequent daily closing price and there is the hope of recovering for capital

asset stocks after the experience of unprecedented losses in stock values in

the previous years. From the long run probabilities, the results showed that

the probability of stock prices either increasing or decreasing is higher than
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its being stable. Thus, it is an indication that there is a high tendency for

stock prices to fluctuate than it being stable in the long run. According to the

long run behavior of the capital asset stocks, there is a high likelihood that

stock prices will not be stable in the future.

References

[1] A. S. Agbam and E. O. Udo, Application of Markov chain (MC) model to the

stochastic forecasting of stocks prices in Nigeria: the case study of Dangote

cement, International Journal of Applied Science and Mathematical Theory

6(1) (2020), 14-33.

[2] W. Anthony and F. Othieno, Semi-Markovian credit risk modeling for consumer

loans: evidence from Kenya, Journal of Economics and International Finance

8(7) (2016), 93-105.

[3] G. D’Amico, F. Gismondi and F. Petroni, A new approach to the modeling

of financial volumes, International Conference on Stochastic Processes and

Algebraic Structures, Springer, 2017, pp. 363-373.

[4] G. D’Amico and F. Petroni, A semi-Markov model with memory for

price changes, Journal of Statistical Mechanics: Theory and Experiment

2011(12) (2011), P12009.

[5] D. X. Ky and L. T. Tuyen, A Markov-fuzzy combination model for stock

market forecasting, Int. J. Appl. Math. Stat. 55(3) (2016), 109-121.

[6] J. R. Norris and J. R. Norris, Markov Chains, Number 2, Cambridge University

Press, 1998.

[7] J. Odhiambo, P. Weke and P. Ngare, Modeling Kenyan economic impact of

corona virus in Kenya using discrete-time Markov chains, Journal of Finance and

Economics 8(2) (2020), 80-85.

[8] M. Shehu, U. Abubakar, L. Nafiu and H. Ahmed, On a semi-Markov model for

stock exchange using capital assets, Islamic University Multidisciplinary Journal

6(1) (2019), 138-143.


