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Abstract
Background: Environmental contamination with elevated levels of copper (Cu), cobalt (Co), iron (Fe), zinc (Zn), lead
(Pb), chromium (Cr6þ), cadmium (Cd), and nickel (Ni)—all states of which are found in Uganda—raises health risk to the
public. Pb, Cr6þ, Cd, and Ni for instance are generally considered nonessential to cellular functions, notwithstanding the
importance of the oxidative state of the metals in bioavailability. As such, we aimed in this study (i) to evaluate heavy metal
concentrations in four vegetables from a typical open-air market in Uganda, (ii) to assess the safety of consuming these
vegetables against the World Health Organization (WHO) recommended limits of heavy metals consumption, and (iii) to
formulate a model of estimated daily intake (EDI) among consumers in the country. Methods: This was a cross-sectional
study conducted in five georeferenced markets of Bushenyi district in January 2020. Amaranthus, cabbages, scarlet
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eggplants, and tomatoes were collected from open markets, processed, and analyzed by atomic absorption spectrometry.
Modeled EDI, principal component (PCA) and cluster analysis (CA) were conducted to identify relationships in the
samples. Results: The levels of essential elements in the four vegetables were found to fall from Co > Cu > Fe > Zn.
Those of non-essential metals were significantly higher and followed the pattern Cd > Cr > Pb > Ni. The highest EDI values
were those of Cu in scarlet eggplants, Zn in amaranthus, Fe in amaranthus, Co in amaranthus, Pb in cabbages, total Cr in
scarlet eggplant, Cd in cabbages and tomatoes, and Ni in cabbages. In comparison to international limits, EDIs for Zn, Cu,
Co and Fe were low while Ni in cabbages were high. PCA showed high variations in scarlet eggplant and amaranthus. The
study vegetables were found to be related with each other, not according to the location of the markets from where they
were obtained, but according to their species by CA. Conclusion: The presence of non-essential elements above WHO
limits raises policy challenges for the consumption and marketing of vegetables in the study area. Furthermore, low EDIs of
essential elements in the vegetables create demand for nutritious foods to promote healthy communities.
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Introduction

In Uganda—the subject of this study, heavy metals have

been identified in milk, beef, drinking water, and herbal

medicines in southwestern Uganda.1–3 Pb concentrations

of between 4 and 18 ppm have been recorded in amaranthus

within Uganda.4 Vegetables grown along Lake Victoria

(Uganda) were associated with high cadmium (Cd) and

lead (Pb) at concentrations of 0,08–0.76 ppm and 0.003–

5.06 ppm respectively above World Health Organization

limits.5 Globalization and increased population growth are

associated with an increasing demand for vegetables,6 and

developing countries are no exception7 demonstrating the

importance of this study. Currently, dietary guidelines in

93% of countries (7 African countries in comparison to 17

in Asia and 33 in Europe) encourage the consumption of

vegetables and fruits.8 Vegetables not only contain essen-

tial nutrients necessary for maintaining the physiological

function of somatic cells and tissues,9,10 but extracts from

various plants may have a role in refining disease manage-

ment strategies through dietary patterns that may promote

health. An amaranthus supplement at 25% and 50% w/w

administered for 4 weeks, for example, was shown to miti-

gate type 2 diabetes mellitus in male Wistar rats,11,12 with

the possible application as a management adjunct in human

pathology in diabetes.13 Scarlet eggplant (Solanum spp)

and cabbage (Brasica spp) extracts (i.e. 1 g in 30 ml of

methanol) were shown to inhibit nitric oxide in macro-

phage cell cultures after 24 h of exposure14 and to protect

a rat cardiomyoblast cell line from oxidative stress i.e.

methanol (1:8) extract at least 2 h, treated with 100, 200,

and 300 mg/ml cabbage extract for 24 h,15 thus suggesting

the importance of these two vegetables in complementary

medicine. This is important since Brassica campestris spp

(administered at 50 mg/kg orally in mice) effects on obesity

were associated with increased expression of lipolysis

genes (i.e. adipose TG lipase, adiponectin, and leptin) and

activation of cyclic AMP-dependent kinase.16 The safety of

consuming a plant-based diet, however, is threatened by the

increasing presence of heavy metals in the environment from

human activities and their subsequent bioaccumulation in

vegetables and mutagenic health risks in humans. Further-

more, stress disrupts protein function, metabolic and gene

expression.17 Abiotic stress as a result of soil salinity, reduced

rainfall, and high temperatures involve protein kinase activity

which modulates energy consumption in the plants.18 Heavy

metal-induced stress has been associated with low growth

rate, loss of chlorophyll, and plant death.19,20

Compounding the problem of heavy metal contamina-

tion are (i) the absence of a robust food safety policy and

technical knowledge in most developing countries to carry

out routine monitoring of the environment,1 (ii) the nature

of pollution reporting in those countries, particularly in

Africa,15 and (iii) not providing consumers information

on the sources and the distribution of contaminants in food

products. There was, therefore, a need not only to deter-

mine the nature and extent of food contamination by heavy

metals in this region but also to encourage the development

of technical skills needed to conduct such studies.

Minerals such as copper (Cu), iron (Fe), zinc (Zn), and

cobalt (Co) are found naturally in vegetables and in small

quantities are essential for cellular function. Copper in the

Cu2þ state is also insoluble in water, but soluble as Cuþ, the

form commonly present in naturally unstable copper sulfate.

The importance of Cu2þ, Fe2þ, Zn2þ, and Co2þ in studies

such as this one cannot, therefore, be overemphasized.21 Fe

is abundant on earth; it is insoluble in its Fe3þ oxidation

state. Iron in oxidation state two (Fe2þ) is important to

human and plant physiological function.22 Chromium (Cr3þ)

is essential in carbohydrate and lipid metabolism and its

daily intake of 0.05–0.2 mg has been establisehd.23,24 In

addition, Cr3þ is considered safe following its wide safety

range of 1 mg/day, although this cannot be said about Cr6þ.
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Cr6þ is toxic to both humans and plants25 and as such, tox-

icological evaluation of food products is placing increased

emphasis on Cr6þ, especially following its documented pub-

lic health relevance.25–27 Nickel (Ni) is an essential metal for

plants to complete their lifecycle, helps some leguminous

plants for root nodule growth and hydrogenase activation.28

In addition, many metalloenzymes such as mononuclear

nickel in Ni-superoxide dismutase, glyoxylase I, and acire-

ductone dioxygenase use Ni to conduct biological activi-

ties,29 and its toxicity has been attributed to displacement,

blocking, and modification of essential components in the

biomolecules during enzyme function.28

Non-essential elements such as Pb, Cr6þ, Cd, and high Ni

in vegetables are easily traced to at least the soils in5,30,31 or

the air particulates32 proximate to vegetable cultivation. In

soil, the natural pedogenetic processes of weathering consti-

tute the main source of heavy metals.33 This source is com-

plemented by human activities such as agriculture.34 The

soil-to-plant transfer factor for heavy metals is known to

vary with plant species.35 Within species, the accumulation

of heavy metals also varies with plant phytometry. For

example, the accumulation of concentrations of total Zn and

Cu in different plant tissues is species-specific36 as has been

illustrated by the differential bioaccumulation of heavy

metals (Pb, Cu, and Zn) in Brasica nigra roots which was

higher in the roots of Colocasia esculentum,37 which in turn

was found to be higher in Raphanus sativus roots.38 Most

studies agree that these observations are consequences of

differential uptake and enrichment of metals among plant

species39,40 which are amplified in areas with naturally high

levels of heavy metals in the soil.41

Heavy metal contamination in plants have been reported in

Vernonia amygdalina i.e. total Cr at 121.8 ppm > Ni at 84.09

ppm > Zn at 53.87 ppm > Pb at 40.61 ppm > Cu at 28.75 ppm >

Fe 14.15 ppm > Co at 7.923 ppm > Cd at 0.1163 ppm in

Uganda.3 In China, Cd was found to be above while Pb and

Cr were below recommended limits in China.42 Furthermore,

Cu, Cd, and Pb have been identified in Brassica oleracea43

and more heavy metals have been identified in several vege-

tables.44 They may cause plant death by damaging roots, or by

altering the physiological functions of plants overall.45,46 In

the latter, Cd, for example, inhibits photosynthesis and

growth by preventing CO2 fixation by the enzyme ribulose-

1,5-bisphosphate carboxylase as was shown in mungbean,47

and/or by suppressing efficient energy transformation in the

photosynthetic electron transport processes, as was shown in

durum wheat.48 Cu, on the other hand, can modify chloro-

phyll degradation.49 Both Cd and Cu at dosages of 7 mg/kg

and 700 mg/kg after 20 days of exposure respectively induced

DNA damage in Pisum sativum roots and leaves.49

Some plants have also been shown to bioaccumulate

(a process associated with plant stress) Cu and Zn in

the shoots more than in other parts of the plants.46 In amar-

anthus, for example, Pb and Cd have been found above the

recommended safe levels in the leaves and roots.46,50 At

high concentrations, non-essential metals such as Pb and

Cd as well as essential metals Zn, Fe, and Cu may play a

role in the pathogenesis of diseases such as Alzheimer’s

disease through oxidative stress mechanisms.37–39 This is

particularly important to African descendants who are

genetically susceptible to this dementing process.51 Dispro-

portional deposition of metals in the body promotes the

expression of secretases that disrupt organelle function,

leading to impairment in function.52,53 That being said,

clinical studies directly linking heavy metals to neurologi-

cal disease remain controversial.

To guide toxicological evaluation of vegetables, the

World Health Organization/Food and Agriculture Organi-

zation (WHO/FAO) set these threshold limits at 40 ppm for

Cu,54 425 ppm for Fe,55 60 ppm for Zn,56 50 ppm for Co,55

0.3 ppm for Pb,54 1.3 ppm for Cr,55 0.2 ppm for Cd,54 and

0.2 ppm for Ni.54 Ni has been reported as an important

metalloenzyme and it helps some plants protect themselves

against predatory insects,57,58 and it’s an established heavy

metal whose concentrations in the environment have to be

monitored.59 Total Fe beyond the acceptable level and very

low levels of Zn have been found in vegetables consumed in

the Kumi district of eastern Uganda.60 Deficiencies of Zn, Fe,

and Cu are not unusual in African soils,61 but micronutrient

deficiencies in plants that raise the specter of nutritional defi-

ciencies in humans are of public health concern.22,62 The

latter is the rationale for the present study. Here, the objective

was (i) to determine the heavy metal concentrations in com-

mon vegetables consumed in the Bushenyi region of Uganda,

a microcosm of a typical vulnerable community located in a

developing country, (ii) to model the estimated daily intake

that would define the health risks of consuming vegetables in

the study population, and (iii) to test whether exploratory

analysis could be utilized to classify vegetables broadly.

Bushenyi was chosen for this study because of our previous

experience in studying environmental safety.3

Methods

Study design

A cross-sectional survey was conducted in southwestern

Uganda in major community markets supplying vegetables

in Bushenyi district in January 2020. A total of five (5)

georeferenced open-air markets (Bushenyi, Ishaka,

Kanshenyi, Kizinda, and Nyakabirizi) were surveyed, and

four (4) species of vegetable samples (cabbages, scarlet

eggplants, tomatoes, and amaranthus)63 were collected

from each market (N ¼ 20). The locations of these markets

where we collected samples were then mapped using quan-

tum geographical systems (qGIS®) 3.14 Cirona.

Mapping the study area

A Sentinel-2A satellite image file (L1C_T35MRV_

A024957_20200402T082817, acquisition date: 2020/04/02)

from the United States Geographical Surveys was imported

Kasozi et al. 3



into qGIS® and divided into 4 levels: �66 units for lake

Edward vegetation (blue), 113 units for heavy vegetation

as seen in Queen Elizabeth National Park (green), 160 units

for sparse vegetation (brown), and >160 for bare soil (red).

Besides, a digital land elevation satellite image from

SRTM1 Arc- Second Global was used (entity ID:

SRTM1S01E030V3; publication date of 23-Sept-2014).

Image file s01_e030_1arc_v3 was also divided into 4 illus-

trative levels, i.e. 909 units for sea level (blue), 1325 units

for lowland level (green), 1740 units for midland level

(brown), and 2156 units for highland level and hills.

Instrument calibration and heavy metal
determination in vegetables

Standard stock solutions, prepared as previously

described,3 were used to obtain the linear calibration ranges

of an atomic absorption spectrometer (AAS, Perkin Elmer

2380) for Pb, Cr, Cu, Zn, Cd, Co, Fe, and Ni, i.e. the metals

of interest in this study. The preparation of sample extracts

for analysis and the concentration of heavy metals in vege-

tables were carried out as described previously.1,64 In brief,

vegetable powder (1 g) was mixed with nitric acid (20 mL)

and perchloric acid (4 mL) and digested on a hot plate until

the total volume was 4 mL. The solution was cooled, fil-

tered, and adjusted to a final volume of 50 mL with deio-

nized water. The metal concentration in each 50 mL sample

extract was then determined by the AAS at wavelengths

and corresponding slit widths given in Table 1.

For public safety reasons, we preferred to determine the

total amount of each elemental metal in samples, irrespec-

tive of their oxidation states. The choice to use the AAS

technique in this study was made with this in mind since

AAS first converts all ions of the same elements to free

atoms (in the atomization step of the technique) before

collecting analytical data.

Modeling of estimated daily intake of heavy metals in
vegetables

The modeled estimated daily intake was calculated using

the equation below i.e.

EDI ¼ C � IR
BW

where, EDI ¼ estimated daily intake, C ¼
concentration of total element, IR ¼ ingestion rate of the

vegetables. Following a scarcity of epidemiological sur-

veys on vegetable consumption in Uganda, a general IR

of 254.3 g/day was used.65 Clinical guidelines from the

Ugandan government were used to define children as those

6 years weighing 15 kg and adults were defined as those

30 years and above weighing 70 kg.66

Statistical analysis

Concentration data in MS Excel version 2019 were

exported into GraphPad Prism Version 6 (GraphPad Soft-

ware, La Jolla California USA). One-sample t-tests were

conducted to compare the average values obtained in this

study with the WHO reference values for vegetables (sig-

nificance reported at P < 0.05). The estimated daily intake

of heavy metals by children and adults alike were descrip-

tively presented as boxplots. Where relevant, the standard

error of the mean (SEM) was chosen here because it relates

the variability of individual data value to the mean of a

population. This is unlike the standard deviation (SD),

which relates the same variability to the mean value of the

sample instead. We believe that SEM is a better estimate of

the likelihood of our sample means coming from the true

population means understudy than SD.

For exploratory analysis, principal component analysis

(PCA) and cluster analysis (CA) were performed with the

aid of PAST software67 were used to reduce data dimension-

ality in multivariate space and determine natural groupings

of variables and cases, respectively. Data were scaled to

have a mean of zero and a standard deviation of one before

PCA and CA to make metal concentrations comparable

across samples. The results of CA and PCA are presented

here as a dendrogram and as scatter plots of relevant princi-

pal components, respectively. Ward’s algorithm was used to

measure dissimilarity between clusters in CA. The variance-

covariance matrix and distance in eigenvalues were used for

PCA, and the results are presented as a geometric plot of

vectors (eigenvectors); the amount by which each vector is

stretched from the origin is the eigenvalue.

Results

Description of the study area

The markets surveyed in Uganda for this study are located

in commercial centers, all within a radius of approximately

6 miles (Figure 1). The centers are in hilly and midland

level areas (Figure 1A) with moderate vegetation coverage

(Figure 1B). The vegetation is densely green due to numer-

ous tea-growing plantations and the cultivation of bananas

for commercial and subsistence consumption. On the

whole, the region is geographically characterized by deep

valleys due to its proximity to the western rift valley of East

Africa.

Table 1. The wavelengths and corresponding slit widths used to
obtain instrumental linear calibration range for each metal.

Metal l, nm Slit width, nm Equation and coefficienta

Pb 217.0 1.0 y¼ 0.0168x þ 0.0082, R2 ¼ 0.9763
Cr 357.9 0.2 y¼ 0.0193x þ 0.0067, R2 ¼ 0.9792
Cu 324.9 0.5 y¼ 0.1152x þ 0.0034, R2 ¼ 0.9996
Zn 213.9 1.0 y¼ 0.2051x þ 0.1166, R2 ¼ 0.9209
Cd 228.8 0.5 y¼ 0.2075x þ 0.0884, R2 ¼ 0.9559
Co 240.7 0.3 y ¼ 0.0332x þ 0.011, R2 ¼ 0.9842
Fe 248.3 0.2 y¼ 0.0304x þ 0.0112, R2 ¼ 0.9815
Ni 323.0 0.2 y¼ 0.0362x þ 0.0125, R2 ¼ 0.9836

ax: absorbance; y: concentration in ppm.
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Descriptive analysis of heavy metal content of study
vegetables

The concentrations of essential metals were in the order of Fe

> Zn > Cu > Co, and non-essential metal concentrations were

in the order of Pb > Cr > Ni > Cd. Concentrations of essential

elements were significantly below WHO limits in the order

Co > Cu > Fe > Zn; non-essential metals were significantly

high compared to WHO limits in the order Cd > Cr > Pb > Ni

in the vegetables. The combinations of vegetables and metals

with levels exceeding the WHO limits were Zn in amar-

anthus, Pb in cabbage, scarlet eggplant, amaranthus and

tomatoes (cabbage > scarlet eggplant > amaranthus > toma-

toes), Cr in scarlet eggplant and amaranthus (scarlet eggplant

> amaranthus), Cd in cabbage, tomatoes, amaranthus, and

scarlet eggplant (cabbage > tomatoes > amaranthus > scarlet

eggplant), and Ni in the order of amaranthus > cabbage >

tomatoes > scarlet eggplant (Table 2). Note that P > 0.05, our

chosen cutoff level for statistical significance, for Zn in amar-

anthus, Pb in tomatoes, Cr in amaranthus, cabbage, and scar-

let eggplant, Cd in scarlet eggplant, and Ni in cabbage and

scarlet eggplant. This means we cannot state with certainty

that the levels of metals in these cases were significantly

different from the WHO limits.

Comparing levels of heavy metals in study samples

The concentrations of Cu were lowest and statistically the

same in amaranthus, tomatoes, scarlet eggplants, and

cabbages (P < 0.05) (Figure 2A). Zn, Fe, Co concentrations

were significantly higher in amaranthus than in all other

vegetables (Figure 2B–D). Among non-essential elements,

significantly higher concentrations of Pb were found in

cabbages and scarlet eggplant than in amaranthus and

tomatoes (Figure 2E). In addition, Cr was significantly

highest in scarlet eggplant (Figure 2F), while Cd concen-

trations were significantly highest in tomatoes and cab-

bages, which were in turn higher than in amaranthus and

scarlet eggplants in that order. Besides, amaranthus was

found to contain significantly higher levels of Ni than other

vegetables (Figure 2H) (Table 3).

Estimated daily intake of heavy metals in vegetables

The results of the risks associated with oral ingestion of the

heavy metals studied were computed from the concentration

values for each of the eight metals as indicated earlier here.

The results, summarized in Figure 3, show that the risk of

consuming Cu in eggplants was the highest of all metals for

both adults and children (Figure 3A). The estimated daily

intake (EDI) of Zn, Fe, and Co, on the other hand, was higher

for adults than for children (Figure 3B–D). Additionally, the

oral ingestion of Pb was higher in cabbages and scarlet

eggplants in adults than in children (Figure 3E). The EDI

for Cr was higher in scarlet eggplants for adults than for

children (Figure 3F). Cabbages and tomatoes had higher

Cd EDIs in adults than children, as shown in Figure 3.

Figure 1. Map of the study area showing the relative location of the surveyed markets.
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Table 2. Description of heavy metal concentrations (ppm) in Ugandan vegetables and comparisons with WHO standards (one-sample
t-tests).

Metals N Min Q1 Median Q3 Max Mean SEM SD WHO limits Discrepancy P-value

Cu
Amaranthus 5 7.3 7.4 7.5 9.0 10.3 8.0 0.6 1.2 40.0 32.0 <0.0001
Tomatoes 5 1.8 3.2 5.1 6.3 7.3 4.8 0.9 2.0 40.0 35.2 <0.0001
Cabbage 5 0.5 0.5 0.9 1.4 1.4 0.9 0.2 0.4 40.0 39.1 <0.0001
Scarlet eggplant 4 1.5 3.1 8.3 11.1 12.0 7.5 2.2 4.4 40.0 32.5 0.0007

Fe
Amaranthus 5 149.0 149.1 151.7 299.9 379.0 209.9 44.4 99.4 425.0 215.1 0.0084
Tomatoes 5 56.4 61.1 67.8 78.6 80.3 69.4 4.2 9.5 425.0 355.6 <0.0001
Cabbage 5 30.5 35.0 40.7 47.6 51.8 41.2 3.4 7.7 425.0 383.8 <0.0001
Scarlet eggplant 4 37.1 39.9 57.9 91.8 99.8 63.2 13.8 27.5 425.0 361.8 0.0001

Zn
Amaranthus 5 38.8 46.2 57.4 79.9 84.0 61.9 8.1 18.1 60.0 �1.9 0.8231
Tomatoes 5 18.4 20.4 23.8 29.4 30.8 24.7 2.2 4.9 60.0 35.3 <0.0001
Cabbage 5 15.4 16.4 17.9 19.4 20.2 17.9 0.8 1.8 60.0 42.1 <0.0001
Scarlet eggplant 4 20.5 20.6 24.2 36.3 39.2 27.0 4.4 8.7 60.0 33.0 0.0048

Co
Amaranthus 5 2.6 3.0 3.4 4.4 5.1 3.6 0.4 0.9 50.0 46.4 <0.0001
Tomatoes 5 0.7 0.9 1.6 1.8 1.8 1.4 0.2 0.5 50.0 48.6 <0.0001
Cabbage 5 0.3 0.4 0.6 0.8 1.0 0.6 0.1 0.2 50.0 49.4 <0.0001
Scarlet eggplant 4 0.6 0.6 0.9 1.6 1.7 1.0 0.3 0.5 50.0 49.0 <0.0001

Pb
Amaranthus 5 2.0 2.9 4.3 5.7 5.7 4.3 0.7 1.6 0.3 �4.0 0.0046
Tomatoes 4 0.8 1.3 3.6 6.7 7.4 3.9 1.4 2.8 0.3 �3.6 0.0858
Cabbage 5 9.4 10.9 13.7 14.5 15.0 12.9 1.0 2.2 0.3 �12.6 0.0002
Scarlet eggplant 4 9.8 10.3 12.3 13.4 13.6 12.0 0.8 1.6 0.3 �11.7 0.0007

Cr
Amaranthus 5 1.2 1.2 1.2 2.8 4.2 1.9 0.6 1.3 1.3 �0.6 0.3858
Tomatoes 4 0.3 0.4 0.5 0.7 0.7 0.5 0.1 0.2 1.3 0.8 0.0038
Cabbage 5 0.7 0.7 1.0 1.5 1.8 1.1 0.2 0.4 1.3 0.2 0.3084
Scarlet eggplant 4 1.2 2.9 8.4 9.4 9.7 6.9 1.9 3.8 1.3 �5.6 0.0618

Cd
Amaranthus 5 1.3 1.3 1.5 1.9 1.9 1.6 0.1 0.3 0.2 �1.4 0.0004
Tomatoes 5 1.7 1.9 2.1 2.2 2.2 2.0 0.1 0.2 0.2 �1.8 <0.0001
Cabbage 5 2.0 2.0 2.1 2.2 2.3 2.1 0.1 0.1 0.2 �1.9 <0.0001
Scarlet eggplant 4 0.2 0.3 0.5 1.0 1.1 0.6 0.2 0.4 0.2 �0.4 0.1073

Ni
Amaranthus 5 3.9 4.0 4.8 5.3 5.6 4.6 0.3 0.7 0.2 �4.4 0.0001
Tomatoes 5 0.7 0.9 1.4 1.7 2.0 1.3 0.2 0.5 0.2 �1.1 0.0063
Cabbage 5 0.4 1.2 3.9 6.5 8.7 3.8 1.4 3.1 0.2 �3.6 0.0602
Scarlet eggplant 4 0.5 0.5 0.8 1.5 1.7 0.9 0.3 0.5 0.2 �0.7 0.0721

KEY: N ¼ number of samples, Min ¼ minimum, Q1 ¼ 25th percentile, Q3 ¼ 75th percentile, Max ¼ maximum, SD ¼ Standard deviation, WHO ¼
World Health Organization, ppm ¼ parts per million.

Table 3. Tukey’s multiple comparisons test showing adjusted P values for metal concentration comparisons in vegetables.

Multiple comparisons

Cu Zn Fe Co Pb Cr Cd Ni

N Adjusted P values

Amaranthus vs. Tomatoes 10 0.1660 0.0002 0.0040 0.0001 0.9873 0.7273 0.0358 0.0319
Amaranthus vs. Cabbage 10 0.0010 < 0.0001 0.0008 < 0.0001 < 0.0001 0.9145 0.0091 0.8690
Amaranthus vs. Scarlet eggplant 9 0.9862 0.0008 0.0045 < 0.0001 0.0004 0.0078 0.0002 0.0240
Tomatoes vs. Cabbage 10 0.0747 0.7355 0.8346 0.2339 < 0.0001 0.9718 0.8951 0.1295
Tomatoes vs. Scarlet eggplant 9 0.3368 0.9869 0.9980 0.8243 0.0004 0.0018 < 0.0001 0.9877
Cabbage vs. Scarlet eggplant 9 0.0034 0.5755 0.9250 0.7420 0.9240 0.0025 < 0.0001 0.0929

6 Toxicology Research and Application



To allow comparison on the same scale, the EDI data used

in Figure 3 were standardized and replotted as shown in Sup-

plementary material S1. The standardized plot showed that

Cu oral ingestion was highest in scarlet eggplants, Zn in

amaranthus, Fe in amaranthus, Co in amaranthus, Pb in cab-

bages, Cr in scarlet eggplant, and Cd in cabbages and toma-

toes, while Ni EDI was highest in cabbages.

Exploratory analysis of estimated daily intake values

In an attempt to find additional information that might not

be as apparent from the linear analyses reported above,

PCA and CA were used to develop standardized EDI values

determined in a multivariate space. The PCA results are

displayed in Figure 4, in which PC1, PC2, and PC3

explained 44.3%, 23.9%, and 17.2% of the variance, respec-

tively. Amaranthus scores positively along PC1, while scar-

let eggplants and cabbage mainly score negatively along the

same axis (Figure 4A). The EDI variation associated with

tomatoes was not explained by PC1 (and indeed not that well

by PC2 or PC3 either; Figures 4B and 4C). Along PC2, only

scarlet eggplant scored highly and positively. Cabbage and

tomatoes score low and negatively along this axis. PC2 did

not explain variance in amaranthus EDI. Along PC3, no

clear message is discernable from the vegetable scores,

although the axis explained a substantial variance in EDI.

Note that the 95% ellipses included in Figure 4 appear to

suggest (i) a higher variation in scarlet eggplant and

The CA results, displayed in Figure 5, show that group-

ings are mostly by vegetable species (and not by the source

market). This was expected from the dependence of heavy

metal accumulation on plant species. One exception requir-

ing further investigation is why eggplants and tomatoes

from Kanshenyi and Ishaka appear to have intrinsically

similar characteristics when the two markets are geogra-

phically far from each other. The conclusion here is that it

is the uptake of metals by vegetables and not the regional

source of vegetables that is more important in understand-

ing the toxicity of vegetables in the study area.

Discussion

The present study demonstrated that heavy metals are

indeed common in vegetables within Uganda. This was

important since, previous studies have identified heavy

metals at levels above WHO limits in beef, milk, and drink-

ing water sources in the Bushenyi area.1,2 In this study, high

levels of two heavy metals, Pb and Cr, detected and above

the WHO limits, were particularly worrisome. Essential

elements were generally highest in amaranthus, while

non-essential concentrations were highest in cabbages and

scarlet eggplants. The differential concentration of heavy

metals in vegetables has been reported previously in Bra-

sica nigra and Colocasia esculentum,36,37 demonstrating

agreement with our study since all vegetables in their study

had different concentrations of the elements. Furthermore,

micronutrient deficiencies in African soils have been

reported previously,22,61,62 demonstrating the public health

risks associated with the consumption of vegetables grown

in poor soils. Since AAS measured the total element con-

centration, the importance of Cr6þ, Cr3þ, Fe2þ, Fe3þ, Cuþ,

Cu2þ 21,25–29 were not investigated in this study.

In Africa, and Nigeria in particular, most vegetables and

fruits consumed contain Zn, Pb, Fe, and Cu above WHO

limits (see68 and references therein for EDIs; see also69) for

daily intake rate of metals in food crops and fruits, how-

ever, there is need to assess the entire diet. This is important

since Zn deficiencies i.e. 60% in Ethiopia,70 and in Uganda

mineral consumptions were exceptionally high (�80%) for

Magnesium, Selenium, Zinc and Vitamins B2, B6, B9, C

and E and lowest (�50%) for Fe (30%), calcium (14.9%) in

Figure 2. Mineral concentrations in vegetables from the study
area. A ¼ Cu, B ¼ Zn, C ¼ Fe, D ¼ Co, E ¼ Pb, F ¼ Cr, G ¼ Cd,
H ¼ Ni. Different superscripts indicate significant differences (P <
0.05). Amaranthus (n ¼ 5), tomatoes (n ¼ 5), cabbages (n ¼ 5),
scarlet eggplants (n ¼4).
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comparison to WHO limits.71 In Kenya, spinach, kales,

and coriander vegetables collected from the Makongeri

market in Thika were found to contain higher levels of

Cu, Zn, Cr, Ni, and Pb than other vegetables which were

studied (Njuguna et al.72; see Pengpid and Peltzer73)

although these were within WHO/FAO and the United

States Environment Protection Agency (US EPA) allow-

able limits. Furthermore, Cu, Zn, and Pb have also been

detected along with Cd in strawberries, cucumber, and

spinach in Egypt.74 This fact may suggest that vegeta-

bles in African markets can accumulate heavy metals

contained within an ecosystem and perhaps serve as

indicators of environmental pollution.75,76 It is important

to note though that detection of heavy metals in

vegetables does not necessarily translate into biological

importance if certain acceptable limits are not exceeded.

Heavy metals enter the food chain from the soils in

which the roots are anchored,30,31 the levels of which can

be influenced by anthropogenic factors (not investigated in

this study). Major human factors that propagate heavy

metal contamination in vegetables include inappropriate

usage of fertilizers, pesticides, biosolids, manure, and was-

tewater.2,33 In the Bushenyi district, these are major anthro-

pogenic factors identified in previous studies since this is a

heavily agricultural area.1,3 Vegetables in Bushenyi are

grown through land cultivation, and no irrigation practices

are practiced, although fertilizer application continues to be

a routine practice. This was important since some plant

Figure 3. Estimated daily intake (EDI in ppm/day: mg/kg) of minerals in adults and children of Uganda from vegetables. A¼ Cu, B¼ Zn,
C ¼ Fe, D ¼ Co, E ¼ Pb, F ¼ Cr, G ¼ Cd, H ¼ Ni. Amaranthus (n ¼ 5), tomatoes (n ¼ 5), cabbages (n ¼ 5), scarlet eggplants (n ¼ 4).
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species appear to have higher enrichment preferences for

particular elements.40 In addition, the preference for some

metals can be affected by the geographical distribution of

the plants.41 These metals in plants for human consumption

raise public health concerns since the disruption of human

physiology outweighs any dietary advantages associated

with the vegetables.3,11,12 Additionally, very high concen-

trations above WHO limits would predispose the commu-

nity to neurological diseases.51,52,77,78

In the southern part of Africa, some heavy metals were

above the maximum allowable concentrations in vegeta-

bles.79 In Swaziland for example, Cr, Cd, and Pb at

concentrations of 17.8 ppm, 6.5 ppm and 8.9 ppm respec-

tively have been identified as a major public health risk,

higher in children than adults,80 demonstrating a need for

local and regional periodic monitoring of vegetables in

developing countries to generate more information to guide

policy. This was shown by using the target hazard quotient

although the estimated daily intake risk was low. Com-

pounding this problem is contaminated water as the only

source of drinking water in southern Africa.81 Similar food

safety challenges have been reported in western Africa

where vegetable irrigation with a dye-polluted stream water

raised the levels of heavy metals above the FAO/WHO/

Figure 4. Principal component analysis of standardized estimated daily intakes of heavy metals in four study vegetables. The first three
principal components used—PC1, PC2 and PC3—collectively explained 85.4% of the variance. Included are the 95% ellipses enclosing
regions of confidence in the mean values for each vegetable. (A) A scatter plot of PC1 versus PC2, (B) PC1 versus PC3 and (C) PC2
versus PC3.

Figure 5. Cluster analysis. Am: amaranthus; Eg: scarlet eggplant; Ca: cabbage; To: tomato; KAS: Kashenyi; NYA: Nyakabirizi; KIZ:
Kizinda; ISH: Ishaka; BUS: Bushenyi. Cophenetic correlation: 0.669; algorithm: Ward’s method.
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US-EPA limits in amaranth shoots.45,46 The risks of bioac-

cumulation from the consumption of vegetables irrigated

with wastewater are known as well.82–84 Well water may

also have high levels of heavy metals.85,86 The information

from developing countries though continues to be limited.

The little that is known so far (in Nigeria) is that typical

irrigation practices are associated with elevated levels of

heavy metals in vegetables.87

This study found that the consumption of Cu, was higher

in adults than in Ugandan children, perhaps due to their

high consumption of scarlet eggplants.68,72 Pb is a major

contaminant compared with other heavy metals (P < 0.05)

in cabbages and scarlet eggplants, and this was in agree-

ment with an Egyptian study in which Pb was a major

contaminant in cucumber and spinach.74 Cabbages have

been shown to have the highest metal pollution

index,40,88,89 demonstrating their importance as indicator

species for environmental pollution. In tomatoes, Cd was

identified as a major public health element in comparison

to the other heavy metals. Pb and Cd have been identified

as major pollutants in Ugandan vegetables4,5 and this was

similar to findings in the current study.

The study identifies important pollutants in vegetables

used for household consumption,75,76 thus raising major

food safety concerns in Uganda. Furthermore, amaranthus

was identified as a major source of Fe and Co in our vege-

table samples. This was in agreement with a previous study

in Uganda where concentrations of amaranthus were found

above WHO limits.61,90

The EDI for Fe was less than 1 mg/kg/day for both

adults and children demonstrating a need for Fe food sup-

plementary feeding in children, adults, and the elderly since

these vegetables were found to be deficient in comparison

to international recommended levels (Table 4).91 EDI for

Table 4. Estimated daily intake for Ni, Fe, Co, Zn and Cu in children and adults with different lifestyles.

Classification Age category EDI (mg/kg/day) Element Reference

Adults 0.001–0.0024 Ni 92

Children 0–6 months 9 Ni 92

Children 7–12 months 39 Ni 92

Children 1–3 years 82 Ni 92

Children 4–8 years 0.099 Ni 92

Adults �18 years 0.069–0.162 Ni 92*
Children 0–6 months 0.27 Fe 91

Children 7–12 months 11 Fe 91

Children 1–3 years 7 Fe 91

Children 4–8 years 10 Fe 91

Children 9–13 years 8 Fe 91

Children Teen boys 11 Fe 91

Children Teen girls 15 Fe 91

Adult men 19–50 years 8 Fe 91

Adult women 19–50 years 18 Fe 91

Elderly �51 years 8 Fe 91

Pregnant teens 27 Fe 91

Pregnant women 27 Fe 91

Breastfeeding teens 10 Fe 91

Breastfeeding women 9 Fe 91

Humans 0.6 Co 93

Food 0.005–0.04 Co 94

Males and females 0.6 months 2 Zn 95,96

Males and females 7 months to 3 years 3 Zn 95,96

Males and females 4–8 years 5 Zn 95,96

Males and females 9–13 years 8 Zn 95,96

Males 14–18 years 11 Zn 95,96

Females 9 Zn 95,96

Pregnancy 12 Zn 95,96

Lactation 13 Zn 95,96

Males � 19 years 11 Zn 95,96

Females � 19 years 8 Zn 95,96

Pregnancy 11 Zn 95,96

Lactation 12 Zn 95,96

Children 2–19 years 0.8–1 Cu 97*
Male (Adults) �20 years 1.4 Cu 97*
Women (Adults) �20 years 1.1 Cu 97*

Superscripts on reference indicates United States population recommended limits.
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Ni was highest in only cabbages in adults when compared

against the United States limits,92 showing that Ni EDI in

scarlet eggplants, tomatoes, and amaranthus would be sup-

plemented for human consumption. EDI for Co was so low

(less than 1) as compared to internationally acceptable lev-

els.93,94 Similarly, low EDIs in Zn and Cu were also asso-

ciated with these vegetables when compared to

international limits.95–97 Findings in this study justify the

high malnutrition rates in the Bushenyi region despite its

high agricultural activity.98,99

Exploratory analysis showed that the samples collected

in this study clustered by vegetable species and not loca-

tion. This pattern of clustering opens the door to comparing

vegetable species from different locations of Uganda; the

comparison could help improve our knowledge of food

safety in Uganda. The WHO has established limits that

would guide policy and the need for government ministries

to partner and work in collaboration with research institutes

has been strengthened by this study. This study also showed

that Zn was the only essential element in amaranthus, while

all non-essential elements were above WHO limits in other

vegetables investigated.

The findings here, preliminary as they may be, when put

together with a preponderance of evidence pointing to seri-

ous and sustained consumption of contaminated foods in

Uganda,3,82,90,100–104 justify a policy revisit by the respon-

sible regulatory authorities in Uganda, i.e. National Drug

Authority (NDA), Ministry of Health, and Ministry of

Agriculture Animal Industry and Fisheries (MAAIF),

Uganda National Environmental Authority (NEMA), to

promote food safety and trade in vegetables. We suggest

that the revisit be aimed at developing collaborative frame-

works. On a broader scale, swamps in Uganda are used to

grow vegetables and yet NEMA has not explicitly con-

trolled the release of industrial waste into the swampy areas

despite the risks this practice poses to public health.45,46,81

Furthermore, the scarcity of information on the physio-

chemical composition of common vegetables consumed

in developing countries generally compounds this problem.

Conclusion

We have shown in this study that vegetables from the

southwestern part of Uganda contain both essential and

nonessential elements. In this study, Fe was a major ele-

ment, especially in amaranthus; the risk of Pb and Cd poi-

soning was highest in cabbages and scarlet eggplant, while

tomatoes were associated with high Cd levels above WHO

limits. Follow up studies to assess Pb sensitive biomarkers

and plasma Pb levels in humans would help guide policy in

the region. Studies to investigate bioavailability and biolo-

gical implications of these heavy metals would help influ-

ence policy in the Ugandan food and drug industry.

Additionally, studies with an emphasis on environmental

remediation technologies to reverse heavy metal contami-

nation in vegetables of Uganda would help guide policy

and promote effective remediation strategies. A principal

limitation in this study is the small number of samples that

call into question the degree to which the results can be

generalized. Further studies to screen more vegetables from

various market centers in Uganda would help offer a much

greater picture on the magnitude of the problem demon-

strated in this basic study. It might also be valuable to

survey discrete consumer populations and their dietary pat-

terns across various age cohorts with an eye to better appre-

ciating the regional and age-related clinical toxicology

implications of heavy metals in Uganda.
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