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ABSTRACT The detection and classification of emotional states in speech involves the analysis of audio
signals and text transcriptions. There are complex relationships between the extracted features at different
time intervals which ought to be analyzed to infer the emotions in speech. These relationships can be
represented as spatial, temporal and semantic tendency features. In addition to emotional features that
exist in each modality, the text modality consists of semantic and grammatical tendencies in the uttered
sentences. Spatial and temporal features have been extracted sequentially in deep learning-based models
using convolutional neural networks (CNN) followed by recurrent neural networks (RNN) which may
not only be weak at the detection of the separate spatial-temporal feature representations but also the
semantic tendencies in speech. In this paper, we propose a deep learning-based model named concurrent
spatial-temporal and grammatical (CoSTGA) model that concurrently learns spatial, temporal and semantic
representations in the local feature learning block (LFLB) which are fused as a latent vector to form an input
to the global feature learning block (GFLB). We also investigate the performance of multi-level feature
fusion compared to single-level fusion using the multi-level transformer encoder model (MLTED) that we
also propose in this paper. The proposed CoSTGA model uses multi-level fusion first at the LFLB level
where similar features (spatial or temporal) are separately extracted from a modality and secondly at the
GFLB level where the spatial-temporal features are fused with the semantic tendency features. The proposed
CoSTGA model uses a combination of dilated causal convolutions (DCC), bidirectional long short-term
memory (BiLSTM), transformer encoders (TE), multi-head and self-attention mechanisms. Acoustic and
lexical features were extracted from the interactive emotional dyadic motion capture (IEMOCAP) dataset.
The proposed model achieves 75.50% and 75.82% of weighted and unweighted accuracy, 75.32% and
75.57% of recall and F1 score respectively. These results imply that concurrently learned spatial-temporal
features with semantic tendencies learned in a multi-level approach improve the model’s effectiveness and
robustness.

INDEX TERMS Emotion recognition, spatial features, temporal features, semantic tendency features, multi-
head attention.

I. INTRODUCTION
The study of affective computing involves machine learning
techniques that can detect, analyze, and predict human
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emotional states and use them to infer intentions and
behaviors. The mood portrayed in one’s behavior contributes
greatly to the person’s intentions. Proper analysis of human
emotions allows the intelligent agents used in human-
computer interaction (HCI) and human-to-robot interaction
(HRI) to mimic human characteristics like empathy, care,
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and remorse which allow them to react according to human
sentiments. Affective computing systems can be applied in a
number of areas some of which are; social assistive living,
health diagnosis, care and monitoring, fraud detection, home
care systems, etc. They can be used to detect skepticism,
satisfaction, stress, and frustration which can point to the
next course of action in human welfare automated systems.
Emotions can be classified according to discrete categories or
emotional dimensions. Ekman et al. [1] proposed six discrete
categories of emotions that are universal to all human beings.
These are happiness, sadness, surprise, anger, disgust, and
fear. Because humans may not express any of these emotions
at all times, it is a common practice to include neutral as the
seventh category. In terms of dimensions, Tsiourti et al. [2]
divided the discrete categories of emotions in terms of a
two-dimensional plane of valence and arousal. Verma and
Tiwary [3] further proposed to include dominance in the two-
dimensional emotion space and analyze the emotions in a
three-dimensional continuous space.

Generally, emotional analysis is categorized according to
the source of data being used. They can be categorized
as physiological, lexical, facial, acoustic, or multi-modal
emotional analysis if it includes more than one modality.
Speech emotion recognition (SER) involves the analysis
of features extracted from a varying time speech signal
(sometimes in combination with their transcriptions) with
the intent of classifying the emotional state of the utterances
therein. SER has recently attracted researchers because
of the need for robust and reliable systems that can aid
interaction between intelligent devices and humans for
different activities. The study of emotions in speech does
not only consider utterances at a single instance but all the
instances in a sequence. This is because psychologically
human emotions are perceived from the previous, present
and future utterances [4]. Moreover, the emotions in each
utterance are triggered by context cues [5] making it so
important to consider the context by emotion recognition
models. Recurrent neural networks (RNN) like long short-
term memory (LSTM) [6] and gated recurrent units (GRU)
are often used in combination with attention mechanisms to
keep track of long-term dependencies between the features.
Memory networks, graph networks, and convolutional neural
networks (CNN) are the other deep learning technologies
often used sequentially with RNNs in SER literature.
However, the sequential consideration of these deep learning
techniques leads to weak learning of either the temporal
or spatial cues depending on which one comes after the
other in the model sequence. Spatial and temporal emotion
information occurs concurrently [7] and therefore should be
learned concurrently instead of learning the spatial features
in the local feature learning block (LFLB) and then temporal
features in the global feature learning block (GFLB) or
vice versa. In [7], the electroencephalography (EEG) signal’s
temporal and spatial feature representations are learned and
integrated into a unified spatial-temporal dependency model.
Grammatical and semantic features in combination with
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emotional features from all the modalities of emotion recog-
nition improve the recognition performance [8]. We therefore
propose a model that concurrently learns spatial, temporal
and semantic tendency features for effective and robust SER.

The contribution of this paper is threefold;

« We investigate the impact and significance of multi-
level fusion of intra and cross-modality speech feature
representations compared to single-level fusion using
the multi-level fusion transformer encoder (MLTED)
model that we propose in this paper.

o« We also propose a deep learning-based concurrent
spatial-temporal and grammatical (CoSTGA) model
that concurrently learns spatial, temporal and semantic
tendency feature representations in the LFLB which are
fused as a latent vector to form an input to the GFLB for
SER.

« In addition to the evaluation of the proposed model’s
sub-modules, its performance is also compared with the
existing approaches for audio and text bimodal SER.

The rest of the paper is organized as follows: the related

work is presented in Section II. The methods used in
this paper are discussed in Section III. The experimental
evaluation is described in Section IV. Section V reports the
results and presents the discussion. A conclusion is drawn in
Section VL.

Il. RELATED WORK

SER research has been carried out using the acoustic
modality alone to enhance improvement in performance.
Recently, Yan et al. proposed a model that uses CNN with
bidirectional gated recurrent networks (BiGRU) and the
attention mechanism to classify emotions from extracted
spectrograms and their first and second delta derivatives using
the interactive emotional dyadic motion capture IEMOCAP)
dataset [9]. An effective and robust model for acoustic SER
was also proposed in [10]. In [11], a late fusion-based model
was also proposed for SER. This model uses two branches
with the convolutional capsule network (CCN) branch taking
in mel spectrograms as input and the BiGRU taking a
combination of mel frequency cepstral coefficients (MFCCs),
chroma grams, spectral contrast, zero-crossing rate (ZCR),
and root mean square energy (RMSE). This model uses
double attention mechanism before the late fusion of the
extracted features. Xu et al. [12] also proposed a single fusion
model based on CNN and multi-head attention to classify
emotions according to the extracted MFFCs and tested its
performance on the IEMOCAP dataset. In addition, emotion
recognition models that use lexical features as input have also
been proposed. Hu et al. [5] proposed to classify emotions
in text using contextual reasoning. Their model uses LSTM
as the perception block and a combination of LSTM and
attention mechanism for the cognitive block which extracts
emotional cues and integrates them iteratively. Recently,
Bekmanova et al. [13] suggested recognition of emotions
from word transcriptions for students that participated in
distance learning examinations.
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However, in real-life speech, the emotional state is
simultaneously inferred from both acoustic and lexical
cues. Moreover, it is not enough to infer speech emotions
from a single modality since the cross-modality interaction
between acoustic and lexical features is as important as the
intra-modality feature interactions for emotion classification.
Though SER that involves utterances of more than one
interlocutor of similar or different accents, gender and culture
is complicated, it is more realistic than one that involves one
sided utterances. Each utterance ought to be analyzed in terms
of the spatial and temporal cues, their context, semantics,
and speaker sensitivity [14]. Moreover, it is argued in [15]
that the context of a given utterance in relation to others
is what differentiates conversational speech between two or
more interlocutors from single sentence emotion recognition.
This partly explains why researchers have always configured
attention mechanisms in SER. In addition to contextualized
utterances in conversational speech, Lian et al. [16] proposed
to automatically correct errors made by emotion recognition
systems by the use of self and inter-speaker influence
considerations through the use of gated graph neural networks
(GGNN). It is also argued in [17] that syntactic information
is as important as semantic information in conversational
speech. They propose syntactic analysis alongside the use of
graph convolutional neural networks (GCNN) and attention
mechanisms.

The complexity of the SER task especially in conver-
sational speech that involves more than one interlocutor
necessitates deep learning models which have to be trained
for a long period of time. This usually results in the
vanishing gradient problem during training. Most models
use RNNs like LSTM [6] to keep track of long-term
dependencies between the features as well as solve the
vanishing gradient problem. Since LSTM only handles
forward long-short term dependencies, bidirectional long-
short term memory (BiLSTM) is often a better choice for
SER. To further solve the vanishing gradient problem in some
cases, skip connections are used [18]. A residual BILSTM
combined with multi-head attention was presented in [10]
and a commendable performance was registered for acoustic
speech emotion recognition with no over fitting and vanishing
gradient problems. In [19], a skip connection between the first
dense and convolution layers that concatenates the resultant
hidden vectors is proposed to improve SER performance.
This is enhanced by a mask layer between the convolution
and bidirectional LSTM to extract features more relevant to
the emotion state before the attention mechanism layer.

In addition, most of the recent work on deep learning-based
SER uses attention-based approaches to solve the SER task.
The attention mechanisms have been proposed in [20], [21],
and [22]. These mechanisms are used to consider long-term
dependencies and computation of the context of a given input
with reference to the surrounding inputs in the sequence.
Additive [20] and multiplicative [21] attention mechanisms
are used in combination with CNNs and/or RNNs and
they involve a sequential computation of the context vector.
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The attention mechanism in [22] called transformer-based
multi-head attention operates dynamically and involves a
parallel computation to obtain context vectors. They also
employ residual connections and layer normalization to better
the performance. We are motivated that the careful use
of attention mechanisms in combination with other deep
learning techniques allows the model to take advantage of
the merits of each. Moreover, it is stated in [23] that global
attention mechanisms are suitable for SER.

Yoon et al. [24] proposed deep learning models; multi-
modal dual recurrent encoder with attention (MDREA) and
multimodal dual recurrent encoder (MDRE) that use text and
acoustic information with and without attention mechanisms
respectively using dual recurrent neural networks in a
multi-modal approach to classifying emotions in audio and
text. Chen and Zhao [25] proposed a multi-modal deep
learning model called STSER that takes in text and acoustic
features as input. It uses CNN for local feature learning
and the BiLSTM for long-term dependencies. The multi-
head attention mechanism is used to consider the context of
speech and focus on the relevant features for the emotion
class. Xu et al. [26] used LSTM and attention mechanisms
in a model that predicts emotional states from text and audio
information. Among the models proposed in [27] is the
IEmoNet (BE) that uses both audio and text information for
SER. The IEmoNet (BE) model uses pre-trained language
models for the text modality that consists of automatically
generated transcriptions and a separately trained audio sub-
model. Singh et al. [28] proposed an SER model that uses a
hierarchy that follows the binary decision tree structure for
bimodal SER after early fusion.

The works in [14], [29], and [30] used transformer-based
multi-head attention. Multi-head attention is a variant of the
self-attention mechanism that computes attention weights of
current inputs in relation to all other inputs in the sequence
described as [22]

. OKT

Attention(Q, K, V) = soft max <ﬁ> \% (1)
where query, Q is Wix;, key, K is ka,- and value, Vis W"x;.
The term x; is a word or feature at position i and dy is the
feature dimension of the query and key. If the self-attention
mechanism is applied multiple times in parallel then this
is called multi-head attention. In [29], multi-head attention
was used to detect emotions in conversational speech with
multi-modal fusion of video and audio modalities. They
consider the two-dimensional space emotions of arousal
and valence for emotion classification. The performance
of this model is reported in terms of the concordance
correlation coefficient (CCC) on the audio-visual emotion
challenge (AVEC) 2016 and 2019 datasets. Ho et al. [30]
used multi-head attention mechanism in a two-level attention
mechanism to classify emotions in dialogues. They used
the acoustic and lexical features as inputs to their model.
A pre-trained bidirectional encoder representation from
transformers (BERT) model was used to extract lexical
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features. The acoustic features extracted from the audio
files were MFCCs. They report results on improvised and
mixed data from the IEMOCAP dataset for audio and text
transcriptions. Lian et al. in two papers [31], and [14]
proposed fusion of acoustic, lexical, and speaker features
using transformer-based multi-head attention to detect and
classify emotions in conversations. They used the transformer
models to learn the intra-modal and intermodal characteristic
interactions before feeding the obtained latent vectors into
a fusion layer together with speaker embeddings. In [14],
they further use the gated recurrent unit (GRU) and multi-
head attention to learn the context of the features and
eventually perform the classification task in a model-level
fusion approach.

There are three approaches to multi-modal fusion; early or
feature level fusion, model level or intermediate fusion, and
decision/late fusion. Early fusion involves the concatenation
of features at the input stage. However, the results obtained
using this approach are affected by the sparsity of data [32].
Decision-level fusion is applied at the classifier level and
ensemble techniques are used to obtain the required values
according to the performance metrics used. Model-level
fusion involves the fusion of latent representations obtained
from different modality models at an intermediate level in
order to leverage the advantages of both feature and decision-
level fusion. Moreover, early fusion and late fusion prevent
models from learning intra and inter-modality interaction
dynamics [33], [34] respectively. Multimodal fusion involves
the alignment of the features in different modalities explicitly
or implicitly [35]. The explicit approach assumes prior align-
ment of features in order to find interaction characteristics
between the elements of different modalities. For implicit,
the model learns the alignment of the different modality
features progressively as it trains. Kimoto et al. [36] assert
that implicit alignment strategy is more naturalistic than
explicit alignment. We therefore use implicit alignment in this
paper.

Spatial features in the text and acoustic modality are
as important as the temporal features in behavioral recog-
nition. Sound sources like interlocutors in an interactive
speech at different locations have varying intensities in
the binaural channels with different frequency spread in
the spectrum. This creates complex spatial dependencies
which are overlapped between multi-channels of different
interlocutors at dissimilar frequencies. Spatial features can be
modeled in reverberate and noisy environments to improve
speech recognition accuracy. In terms of the text modality,
sentences uttered usually express information about the
spatial configuration that ought to be modeled. The spatial
configuration of the keywords in an utterance or sentence
needs to be learned by the model. It is also worth noting that
spatial information in languages plays an important role in
semantic understanding. The spatial features are combined
with temporal and semantic features to improve classification
accuracy. In this work, we modeled the spatial features in the
spectral-temporal representations and word embeddings of
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different interlocutors in interactive speech using the dilated
causal convolution (DCC) layers.

The recent work discussed thus far considers spatial and
temporal features learned one after the other sequentially in
the LFLB and GFLB. It should however be noted that spatial
and temporal features in emotions occur concurrently [7].
Therefore, learning one after the other in a sequence may not
give an accurate representation of these features. In addition,
though all modalities consist of emotional cues pertinent
to emotion recognition, the uttered sentences in the text
modality consist of grammatical and semantic features [8]
which can provide supplementary knowledge to the model for
effective and robust SER. In [37], a model was suggested that
uses multi-channel convolutional neural networks (MCNNs)
to learn emotional and grammatical features from the text.
However, as asserted in [8], CNNs and RNNs can weakly
extract grammatical and semantic information since they are
good at learning spatial and temporal features but not the
context of the sequences. We therefore propose a model that
concurrently learns spatial, temporal and semantic features in
the LFLB and their representations are fused and fed into the
GFLB. We use dilated causal convolutions (DCC) for spatial
features and BiLSTM for temporal features in combination
with attention mechanisms. This model particularly uses
transformer-based multi-head attention for grammatical and
semantic feature representations.

lll. METHODS

The main objective of this paper is to propose a deep
learning-based concurrent spatial-temporal and grammatical
(CoSTGA) model. The CoSTGA model concurrently learns
spatial and temporal features from the audio and text
modalities of speech that are fused with the semantic
tendency features learned from the uttered sentences at the
same time in the LFLB. We first present the multilevel fusion
transformer encoder (MLTED) model that we propose and
use to investigate the performance of multi-level fusion as
compared to single-level fusion in SER studies. Secondly,
we discuss the proposed CoSTGA model that uses multi-
level fusion learning of spatial, temporal, and semantic
features. The proposed CoSTGA model learns spatial and
temporal representations concurrently which are fused with
the semantic tendency latent vector in the LFLB to form an
input to the GFLB. This following subsections presents the
different approaches proposed in this paper.

A. THE MULTI-LEVEL FUSION TRANSFORMER ENCODER
(MLTED) MODEL

The aim of this model is to investigate the significance of
multilevel fusion as compared to single-level fusion in SER
studies. As shown in Fig. 1, the multi-level fusion transformer
encoder (MLTED) model uses transformer encoders (TE)
to learn the lexical and acoustic features which are fused
at the first level and the resultant feature representation
is fed into multi-head attention layer of two heads. The
resultant feature representation from this level is again fused
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FIGURE 1. Multi-level fusion transformer encoder (MLTED) model.

with the separate lexical and acoustic feature representation
from the transformer encoder before being fed into another
multi-head attention layer of two heads and later through
the fully connected (FC) layer. The softmax activation
function is used for emotion classification at all levels
without separate consideration of spatial, temporal or explicit
semantic tendencies. We used the transformer encoder and
multi-head attention layer in this architecture because of
the global nature of operation to extract intra and cross-
modal interaction characteristics progressively to improve the
reliability and robustness of the model. The results from this
architecture are compared with results from a model that
consists of only the first-level fusion.

The transformer encoder (TE) block consists of four heads
which take in inputs from projections done by linear models
as shown in Fig. 2. The position encoding is handled by the
use of a one-dimensional convolutional layer that extracts
the relationship between acoustic features. We used similar
position encoding as was used in [22] for lexical features.
The encoding result is passed through linear models to obtain
the query O, key K, and value V that would later be used
in the scaled dot product computation to obtain similarities
between features. We used feed-forward neural networks
(FFN) as linear models. It should be noted that in self
attention mechanism, every token in an utterance computes
the similarity or attention weight in regard to all the other
tokens. This implies that each vector of the query is compared
in terms of similarity to all the keys of the utterance or
sentence. Therefore, the attention of a target word or acoustic
feature with respect to the input word is calculated by using
the query of the current word Q@ and the keys Ki, K>, K,
of all the other words, a matching score normalized with a
softmax function is obtained and multiplied as weights with
the value V. Each head A; (self-attention layer) uses different
weights Wl.q, Wl.k s Wl.V for each word or acoustic feature U,
and the results are concatenated. It also involves residual
connections and layer normalization. The described attention
score computations are repeated as many times as the number
of attention heads in parallel. Through the use of parallel
self-attention layers that obtain similarity by use of a scaled
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FIGURE 2. Transformer encoder(TE) block of four heads.

dot product, contextualized attention of features in relation
to others is performed in a dynamic way. The transformer-
based multi-head attention considers the dynamic context of
the past, present, and future representations for the analysis
of the semantics depicted by the lexical features along with
the paralinguistic cues in SER. The transformer encoder
operates in parallel which improves its performance, reduces
complexity and training time. The output of each transformer
encoder fe is represented as

Given a conversation file, U = Uy, U, ....., U,
Un = Qn, Kn, Vn
h; = Attention(Qy,, K, V,)
output fe = dense(concat(h;, . ..., h;))

@

B. THE PROPOSED CoSTGA MODEL

The architecture of the proposed deep learning-based
CoSTGA model that uses concurrent spatial, temporal and
semantic tendency features is shown in Fig. 3. The proposed
end-to-end CoSTGA model learns low-level representations
of these features concurrently as opposed to the sequential
approach used by the existing models. This model consists
of a feature extraction block, the LFLB and the GLFB. The
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FIGURE 3. Proposed CoSTGA Model that uses concurrent spatial, temporal and semantic features.

feature extraction block is used to pre-process and extract
acoustic and lexical features from each modality as explained
later in Section IV. The LFLB consists of three modules that
are used to concurrently learn the low-level spatial, temporal
and semantic tendency features. The spatial and temporal
modules are used by the model to concurrently learn low-level
spatial and temporal features of each modality respectively.
The semantics module is used to learn the grammatical and
semantic tendencies of the uttered sentences as in [8]. The
resultant vector is fused at the second level to form inputs
to the GFLB that is responsible for learning the high-level
feature representations. The GFLB consists of a multi-head
attention layer of two heads and a BILSTM layer of 256 units
whose output is fed into a dense layer and softmax layer
for emotional classification. We chose to use multi-head
attention in combination with BiLSTM layers in the GFLB
to allow the model to learn globally contextualized high-
level features of the combined feature representations before
classification. In addition to Fig. 3, we describe the proposed
CoSTGA model in Algorithm 1. The algorithm shows that
given an utterance U that contains an audio signal a and its
transcription text 7, the model’s goal is to extract features X
and X, analyze and learn from them the spatial features Sy,
temporal features Ty and the semantic tendency features Gy
of the uttered sentences at the LFLB. The resultant vectors
are fused and fed into the GFLB to allow the model to learn
the global feature representations ST that are later used by the
softmax function to recognize one of the emotions in the set
y = (happy, angry, sad, neutral). In the subsequent sections,
we describe the spatial, temporal and semantic modules in
detail.

1) THE SPATIAL MODULE

The spatial module involves learning spatial features that
exist in the audio and text modalities separately and later
concatenated at the first level fusion. We argue that this
preliminary learning process allows the model to learn the
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Algorithm 1 The proposed Deep Learning-Based CoSTGA
SER Model

Given an utterance input: audio a, text ¢ and output: y = hap,ang,sad, neu
for epoch in epochs:

Word embeddings X| = BERT(z)

MFCCs X, = librosa(a)

X» = mean (Xp)

for LFLB in CoSTGA:
a) S; = spatial features(Xy)
b) Sq = spatial features(X7)
¢) Ty = temporal features(X|)
d) T, = temporal features(Xy)
) Gy = semantic features(X1)
f) S¢ = fuse Sy and S
g) Ty =fuse Ty and Ty,
h) Sy = DCC(f)
i) Sy = selfAtt(h)
J) S = Dense(i)
k) Ty = BiLSTM(g)
D) Ty = selfAtt(k)
m) Ty = Dense(!)
n) ST = fuse( Gy, Sf, Ty)

end for

for GFLB in CoSTGA:
0) ST = multi-head attention layer(S7"), number of heads = 2
p) ST = BiLSTM layer(ST), units = 256
q) ST = Dense(ST), units = 128
Output: y = Softmax(ST)

end for

end for

intra-modality feature interaction characteristics of audio and
text transcription files before being concatenated at the sec-
ond level to learn the cross-modality feature representations.
The resultant feature representation is fed into a DCC layer
and self-attention mechanism before a fully connected (FC)
layer that resizes the feature vector to be able to be fused
with other modality feature representations. In this module,
we use the DCC in combination with the transformer encoder
(TE) and sequential attention as shown in Fig. 4 to form the
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FIGURE 4. Audio or text spatial block used in the spatial module of the
proposed CoSTGA model.

first part of the spatial module that we call either audio or
text spatial block depending on the modality. We particularly
use DCC layers in the proposed model to learn the spatial
feature representations while covering a large receptive field.
The dilated convolutions spread causal filters by skipping
values in the input sequence in specified predetermined
steps. It should be noted that dilated convolution layers
provide a large receptive field with a few layers which
allow faster convergence with minimal use of resources.
We gradually increase the receptive fields by increasing the
dilation rates from 1 to 4 for the layers considered in the
architecture. The DCC allows filters to be applied over a
large receptive area without an increase in the kernel inputs
and the number of parameters which improves spatial feature
learning. After the DCC layers, the resultant representation
is fed into a transformer encoder similar to the one discussed
earlier. The resultant representations from each modality then
undergoes first-level fusion with the other to form cross-
modality spatial feature representations that are fed into
another DCC layer and a self-attention layer before the dense
layer that ensures a resultant vector similar in size to the
output of the other two modules. We chose to use the self-
attention mechanism at this stage to benefit the model with its
advantages including computing a global context of the inputs
as discussed earlier but with fewer parameters as compared to
multi-head attention.

2) THE TEMPORAL MODULE

The temporal module consists of BILSTM and self-attention
layers used to learn the intra-modality temporal feature
relationships before first-level fusion. After the first level
fusion, we configured BiLSTM and self-attention layers
again to pay attention to the global context of the cross-
modality features before feeding them into a dense layer that
ensures the same size as the outputs of the other modules to
be fused with before the GFLB. The BiLSTM layers used
in this module consist of 256 units each. The operation of
the BiLSTM layer involves sequential updates of the cell
and hidden states in the forward and backward directions to
ensure vivid long-term dependencies. The BiLSTM’s final
hidden state is fed into the self-attention mechanism and
later the dense layer. BILSTM helps in solving the vanishing
gradient problem that would otherwise occur. Fig. 5 shows the
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FIGURE 5. Audio or text temporal block used in the temporal module.

temporal audio or text temporal blocks used in the proposed
CoSTGA model to learn the intra and cross-modality features
before and after first-level fusion respectively. The output of
the temporal blocks for audio or text modalities before or after
first-level concatenation is represented as

Given a conversation file, U = Uy, Ua, ....., U,
st = U,
. - «
fri = (hns hn)

selfAt(f;) 3)

The speech file U consists of utterances U, for a given

block output, A (s)

length. Z is the forward hidden state sequence and f(; is the
backward hidden state sequence of the bidirectional LSTM
f. The term i is the ith layer, n is the time in a sequence. The
utterances in the speech consists of acoustic and lexical clues
which are separately at a given instance.

The self-attention mechanism is particularly used in this
block to learn the global context vector of the features in the
individual lexical and acoustic modalities separately before
being fused to learn the cross-modality features. The input
sequence is encoded into vectors and a subset of these
that represent the most relevant feature representations is
chosen. The cross-modality temporal feature representations
are learned using a similar architecture that consists of the
BiLSTM, self-attention and dense layers. The dense layer
ensures the same size that can be fused with other outputs
of the other modules at the next fusion level.

3) THE SEMANTICS MODULE

Though both the audio and text modalities consist of
emotional factors and features that provide clues about
the human emotional state, the text modality includes the
grammatical and semantics cues [8] of the spoken sentence
that can avail further knowledge about the speech utterances.
Due to this fact, we model the grammar and semantics of
the spoken sentences using the multi-head attention layer
that consists of four self-attention heads. The resultant
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vector is fed into two dense layers of 768 and 128 units.
We call the feature representations obtained from this module
semantic tendency feature representations since they give the
model a clue of the emotional intention from the semantics
perspective. The multi-head attention layer that we used to
learn these feature representations takes the whole sentence
and a global context of each word in terms of another within
the sentence is computed using equation 1. The output of
this module is fused with the spatial and temporal feature
representations at the second level fusion and input into the
GFLB to further learn high-level feature representations and
subsequently predict the emotion state.

IV. EXPERIMENTAL EVALUATION

In this section, we present the dataset, features and exper-
iments carried out to investigate multi-level fusion and
evaluate the performance of the proposed CoSTGA model.
To carry out the experiments we used Librosa 0.9.2, with
python programming, Keras 2.8.0 Application Programming
Interface (API), and Tensorflow 2.6 backend. The Nvidia
GeForce RTX 2080 super graphics processing unit (GPU)
was used. An initial learning rate of 0.0001, a batch size of 32,
and the Adam optimizer were used for all the experiments.
The cross-entropy loss was used as the objective function.
The performance metrics used in this paper are computed
using the Sci-kit-learn toolbox with modifications where
need be.

A. DATASET

The IEMOCAP [38], which was collected at the University
of Southern California as a multi-modal and multi-speaker
emotion recognition database was used in this paper. It is
a dyadic database that contains audio and video data with
transcriptions in addition to motion capture recordings.
It consists of five sessions of dialogues that are improvised
and/or scripted to depict discrete emotions annotated by
more than three experienced evaluators. It consists of happy,
angry, neutral, sad, frustrated, fearful, excited, disgusted,
and surprised with another category named other. For each
instance of the dialogue to be labeled by the evaluators, the
data was partitioned into 3 to 5 seconds length utterances.
They also classified the data obtained in terms of emotional
dimensional spaces of valence, activation, and dominance.
The database consists of the dialog and sentence recordings
for about 12 hours.

In this paper, we chose to use mixed (improvised and
scripted files) audio dialog (conversation) files, and transcrip-
tions. Consistent with prior research we chose to evaluate
the performance of the model on four discrete emotions
of anger, sadness, excitement, and neutral. These were also
chosen because of their seemingly balanced nature except for
neutral and substantial class size as compared to the other
emotions. As shown in Fig. 6, the data distribution included;
1103 samples for angry, 1084 for sad, 1041 for excited,
and 1708 for neutral which is a total of 4936 samples. The
4936 samples were apportioned in a ratio of 80% for training,
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FIGURE 6. Data distribution of the considered discrete emotions.

10% for validation, and 10% for testing. To alleviate the class
imbalance problem, we configured class weights depending
on the number of samples per emotion category in the Keras
model.

B. FEATURE EXTRACTION

We followed the procedure in [39] to pre-process the data
from the IEMOCAP dataset. The details of the acoustic and
lexical features used are described below.

1) ACOUSTIC FEATURES

We used a sampling rate of 16 kHz since the dataset was
collected at the same. A maximum length of 100 frames
which is about 10 seconds of the acoustic signal was chosen.
To ensure equal sequence length, the speech signal was
zero-padded if the audio file was shorter and the longer
ones were truncated to have fixed-length inputs. We also
removed the silent regions since they do not carry any
emotional cues. A Pre-emphasis filter was used to allow only
the frequencies of the speech signal that are considered to
have pertinent clues for emotion recognition. To speed up
the fast Fourier transform (FFT) process and avoid spectral
leakage we performed framing and windowing of the speech
signal. We particularly used the hamming window function
for the windowing process. We ensured that the frames
are appropriately overlapped after windowing to avoid loss
of signal information. Instead of the 34 speech features
extracted in the previous research, 40 MFCCs were extracted
using Librosa. Mel spectrograms, a combination of spectral
and prosodic features were also experimented on, however,
similar or worse results were obtained. The frame size and
hop length were 512 and 128 respectively. MFFCs are low-
level descriptors of sound that describe changes per time
interval of different sound spectrum bands. They depict the
vocal tract frequency response in sound. They are obtained
by creating triangular filters on already constructed log mel
spectra and decorrelating the obtained filter banks using the
discrete cosine transform (DCT). Since they use the mel scale
which mimics the human auditory system, MFCCs provide
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the model with perceptual frequency representations that are
relevant for emotion recognition.

2) LEXICAL FEATURES

Because static pre-trained models for word embeddings do
not dynamically understand the logical meaning of some
words in sentences, we chose to use dynamic word embed-
ding models. The dynamic word embedding model that has
recently been used in recent research is the BERT model [40].
We therefore used the pre-trained BERT model to extract
word embedding vectors from transcriptions. We particularly
used the distilBERT because of its lightweight yet effective
compared to others that do the same task. However, a smaller
BERT may yield poorer results. The BERT model operates
in such a way that the first token depicts the class of the
sentence and the last token acts as a sentence separator.
BERT produces dynamic word embeddings that are aware
of their surrounding in the input sequence which helps the
model to achieve contextualized learning that eventually
improves its robustness and reliability. The BERT model also
represents the grammatical and semantic features more effec-
tively compared to the other existing dynamic embedding
models.

C. EXPERIMENTS

The first category of experiments we carried out were to
ascertain the significance of multilevel fusion of learned
intra and cross-modality features using the MLTED model.
We then carried out other experiments on the proposed
CoSTGA model that uses multi-level fusion to concatenate
the learned features at two progressive levels as explained in
Section III.

1) EXPERIMENTS ON MULTI-LEVEL FUSION

The significance of multilevel feature fusion was investigated
in form of ablation studies of the MLTED model. The
experiments on multi-level fusion involved the single-level
fusion individual modality transformer encoder (SLTED) to
find out the performance of the first-level modal fusion
and the MLTED for multi-level fusion. The first experiment
used a model named SLTED where the transformer encoder
(TED) was used to extract intra-modality features from the
individual modalities and then they were fused. In the second
experiment the whole MLTED model was used. The first
fusion extracted intra-modality features which were fused as
in the first experiment as cross-modality features. The intra-
modality features extracted using single modality TED were
then fused with the cross-modality features at the second level
as shown in Fig. 1.

2) EXPERIMENTS ON THE PROPOSED CoSTGA MODEL

We carried out experiments on the proposed CoSTGA
model in form of ablation studies to ascertain the impact
and significance of its constituent modules and the entire
model for the SER task. We particularly carried out
experiments to ascertain the performance and robustness of
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the model for each individual emotion. Experiments were
also carried out to ascertain the significance of the spatial
module (SA), temporal module (TA), the temporal and
spatial module (TASA) and finally the proposed CoSTGA
model that consists of the spatial, temporal and semantic
modules.

V. RESULTS AND DISCUSSION

In this section, we present the results of the experiments
on the multi-level fusion MLTED model and the proposed
CoSTGA model. We discuss the significance and impact
of multi-level fusion compared to single-level fusion in
SER. We also present results and discuss the impact and
significance of the proposed CoSTGA model in SER in
relation to our experimental results and those obtained by
existing approaches.

A. RESULTS

We report results in terms of unweighted accuracy (UA),
weighted accuracy (WA), precision (P), recall (R), F1 score
(F1), loss (L), area under the curve (AUC) and individual
class confusion ratios (CR) as our performance metrics.
We also present the confusion matrices obtained from all
the experiments. Tables 1 and 2 present the results of the
performance of the MLTED model and its constituent single-
level sub-model, the SLTED model. Table 1 presents the
general performance of the models while Table 2 presents
the models’ performance on individual emotional class.
These results confirm the superiority of multi-level fusion as
compared to single-level fusion. This prompted us to propose
a model that uses multi-level fusion.

The results of the proposed CoSTGA model which
employs multi-level fusion and those of its sub-models are
presented in Tables 3, 4 and 5. Table 3 presents the proposed
CoSTGA model’s performance results together with those
obtained from ablation experiments of spatial (SA), temporal
(TA) modules and the TASA model that combines the spatial
and temporal representations without consideration of the
grammatical and semantic information. Table 4 presents the
performance of the TA and SA models on individual classes.
Table 5 consists of the performance of the TASA model
and our proposed CoSTGA model on individual emotional
classes.

The confusion matrices for the multi-level fusion exper-
iments are shown in Figs. 7 (a) and 7 (b). These figures
further show the significance of multi-level fusion compared
to single-level fusion in terms of how the models predict
the individual emotion classes. The confusion matrices for
the TA, SA, TASA and the proposed CoSTGA model
are shown in Figs. 8 (a), 8 (b), 8 (c) and 8 (d). These
confusion matrices show the progressive improvement in
even robustness from the models considered for ablation
experiments to the proposed model in terms of individual
emotion class prediction compared to being robust on one
emotional class and poor on another.
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TABLE 1. Performance of the SLTED model and MLTED model.

Model Fusion level UA(%) WA(%) P(%) R(%) F1(%) AUC(%) Loss
SLTED Single 69.75 65.67 7242  63.16 67.50 76.92 0.8198
MLTED  Multi 73.54 70.00 75.69 68.99 72.18 79.36 0.7306
TABLE 2. Performance of the SLTED model and MLTED model on individual emotional classes.
Model SLTED MLTED
Emotion | P(%) R(%) Fl1(%) AUC(%) CR(%) [ P(%) R(%) Fl1(%) AUC(%) CR(%)
Excited 80 47 59 72 47 76 60 67 78 60
Sad 62 82 70 84 82 72 75 73 83 75
Angry 68 69 69 80 69 87 63 73 80 63
Neutral 63 65 64 72 65 62 79 69 76 79
0.8
angry 0.26 0.03 o angry 0.28 0.04 0.7
0.6
0.6
B excited 0s ~ excited 0.5
2 2
= = 0.4
2 ro.4 2
[= [=
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FIGURE 7. Confusion matrix results; (a) SLTED model. (b) MLTED model.

TABLE 3. Performance of the proposed CoSTGA Model and its sub
models.

Model UA(%) WA(%) P(%) R(%) F1(%) AUC(%) Loss

TA 73.42 72.42 7586  69.62 72.61 81.38 0.7280
SA 73.92 70.00 75.03 7228  73.65 79.41 0.8050
TASA 74.1 73.67 7445  73.04 7357 82.2 0.8900
CoSTGA  75.82 75.50 7589 7532 7557 83.50 0.7793

B. DISCUSSION

In this subsection, we discuss the implications of the results
obtained from the experiments we carried out. We also
compare our proposed CoSTGA model’s performance with
the existing approaches.

1) SINGLE AND MULTI-LEVEL FUSION

According to the results shown in Tables 1 and 2, the
multi-level fusion approach improves the performance of
speech emotion recognition systems. The results show that
the progressive multi-level fusion of the cross and intra-
modality feature relationships improves performance. From
the experimental results in Table 1, we realize that the
performance of the SER model improved by 4.33% and
3.79% of weighted and unweighted accuracy respectively.
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The loss exhibited by the model on the testing dataset reduces
from 0.8198 to 0.7306. The multilevel fusion further obtains
superior performance over single-level fusion in terms of
precision, recall, F1 score, and the area under the curve
which proves its effectiveness and robustness in the SER task.
The robustness and effectiveness of multi-level fusion are
further shown in Table 2 in terms of the individual emotion
class performance. Different from existing approaches the
results show that progressive multilevel fusion improves
the model’s performance on individual class prediction in
an even manner compared to performing so well on one
emotion with poor performance on the other. This scenario
happens in previous research especially for emotions that
exist in the same dimensional plane like anger and happiness.
However, a balanced area under the curve, confusion ratio,
F1 score and recall are registered by the MLTED model
that uses multi-level fusion compared to single-level fusion.
This evenly effective and robust performance is further
visualized in Figs. 7 (a) and (b). Fig. 7 (a) shows that
the model is more effective at detecting the sad emotion
but very poor at detecting the excited emotion, however
with multi-level fusion the MLTED model whose confusion
matrix is shown in Fig. 7 (b) is evenly effective for all the
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TABLE 4. Performance of the temporal (TA) and spatial (SA) sub models on individual emotional classes.

Model TA SA

Emotion | P(%) R(%) FI(%) AUC(%) CR(%) | P(%) R(%) FI(%) AUC(%) CR(%)

Excited | 73 66 69 80 66 76 53 63 75 53

Sad 78 70 74 82 70 71 80 75 85 80

Angry 73 84 78 87 84 81 67 73 81 67

Neutral 68 70 69 76 70 65 78 71 76 78
TABLE 5. Performance of the TASA and proposed CoSTGA models on individual emotional classes.

Model TASA CoSTGA

Emotion | P(%) R(%) F1(%) AUC(%) CR(%) [ P(%) R(%) F1(%) AUC(%) CR(%)

Excited 69 74 71 83 74 72 60 73 83 74

Sad 75 75 75 84 75 77 74 75 84 74

Angry 80 76 78 85 76 79 82 80 88 82

Neutral 71 70 70 77 70 73 72 73 79 72

emotion classes involved. This is because the proposed model
learns the intra and cross-modality feature representations
progressively at the first and second fusion levels. This is
done by leveraging the benefits of both feature-level and
decision-level fusion by the model-level fusion approach.
The results show the superiority of multi-level fusion models
as compared to single-level fusion models. It should also
be mentioned that the multi-head attention mechanism used
in the MLTED model to compute context vectors of the
inputs that are most relevant for the emotion recognition task
in the sequence improves the SER performance. A careful
combination of attention mechanisms and the traditional deep
learning approaches for learning spatial and temporal features
in a multi-learning approach allows the model to benefit
from the parallel computation of global attention for better
results. We were therefore motivated by these results to
apply a combination of multi-head attention mechanisms and
traditional deep learning techniques to allow the model to
learn the spatial, temporal and semantic features.

2) PERFORMANCE ANALYSIS OF THE PROPOSED

CoSTGA MODEL

The results presented in Tables 3 and 5 suggest that the
proposed CoSTGA model is effective and robust for the SER
task. Table 3 shows that the concurrent learning of spatial,
temporal and semantic features in the LFLB and subsequent
fusion at the second level in the GFLB yields a performance
of 75.50% and 75.82% of weighted and unweighted accu-
racy respectively. The proposed model’s effectiveness and
robustness are further shown by the precision, recall, F1 score
and AUC values of 75.89%,75.32%, 75.57% and 83.50%
respectively. These effective results are due to the fact that the
model learns the three main factors that constitute an emotion
concurrently without first learning one and then the other in
a sequential manner as is done by the existing approaches.
Table 3 further presents details of the significance of each
module that constitutes the proposed CoSTGA model. It is
observed that a combination of the concurrent temporal
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and spatial feature representations obtains 74.1%, 73.67%,
73.04%,73.57% and 82.2% in terms of unweighted accuracy,
weighted accuracy, recall and AUC respectively. These
results are however further improved by the addition of the
semantic information to make the proposed CoSTGA model
as mentioned earlier. The CoSTGA model also exhibits a loss
of 0.7793 compared to 0.8900 of the TASA model that only
combines the concurrent temporal and spatial information
without the semantics information. These results uphold the
significance of semantic and grammatical information in
SER system’s effectiveness and robustness. The temporal
and spatial modules’ contribution in terms of the individual
emotion classes are presented in Table 4, From these tabular
results, it is clear that the sub-models are effective on some
emotion classes but poor on others. An example is the
confusion ratio of excited and angry compared with sad
and neutral, excited and the others for spatial and temporal
sub-models respectively. This explains why the existing
approaches that use either of the representations obtain
uneven effectiveness and robustness of emotion classes.
It is however, clear from all the results presented in this
section that each of the sub-models contributes positively to
the general performance of the proposed CoSTGA model.
The evenly distributed and effective individual emotion
class recognition exhibited by the proposed CoSTGA model
compared to the TASA model is shown in Table 5. This is
especially evidenced in terms of the AUC, confusion ratio
and F1 score in which the proposed CoSTGA model obtains
values that are in the same range for all emotion classes.

It is further observed from the confusion matrices shown in
Figs. 8 (a), (b), (c) and (d) that there is balanced generalization
by the proposed CoSTGA model compared to the constituent
sub-models. The prediction of the happy emotion class which
is poorly done by the TA and SA sub-models improves
with a combination of the spatial and temporal feature
representations. It is also observed that this combination
lowers the angry emotion recognition accuracy but it is
improved by the addition of grammatical and semantic
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knowledge in the proposed CoSTGA model. These results
also confirm that the progressive increase of levels of fusion,
concurrent spatial, temporal and semantic feature learning
improves the performance of SER models. The confusion
matrices also show that there is better generalization during
inference of the proposed CoSTGA model as compared to
the control experiments. It should however be noted that
the emotion classes are mostly confused with the neutral
class. This is because the neutral emotion class is situated
at the center of the two-dimensional arousal-valence spaces
of emotions which complicates the discriminatory capability
of the model [41]. Since the proposed CoSTGA model’s
performance has been evaluated on a dyadic database that
includes interactive speech between a pair of interlocutors,
we anticipate that the results reported may fluctuate if tested
on datasets that were collected in more natural environmental
conditions with a variety of interlocutors in terms of gender,
culture, age and accent, ambiance and noise attributes.
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TABLE 6. Performance comparison of the proposed CoSTGA model with
the existing models.

Fusion Model UA(%) WA(%) R(%) F1(%)
MDRE [24] - - 71.8 -
Single-Level STSER [25] 72.05 71.06 - -
LAMER [26] 70.9 72.5 - -
IEmoNet (BE) [27]  72.05 74.98 - -
Ho et al [30] - - 7323 7332
Singh et al [28] 74.5 - 73.2 -
Muli-level Proposed CoOSTGA  75.82 75.50 7532 7557

On the whole, there is an effective and generally robust
SER for multi-level fusion compared to single-level fusion
with a combination of concurrently learned temporal, spatial
and semantic features in the proposed CoSTGA model.

3) COMPARISON WITH EXISTING APPROACHES

We compared the performance of the proposed model with
the existing approaches. It should be noted that most of
the existing approaches do not use semantic tendencies
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except [8] which does not consider spatial feature learning.
Three modalities of video, text and audio are considered in [8]
for SER. The other approaches use either spatial, temporal
feature learning or both sequentially but not in a concurrent
manner. In terms of multi-level fusion, most of the approaches
apply early or late fusion but not model or intermediate fusion
used in this paper. For a fair comparison, we chose to compare
the performance of our proposed model with existing models
that use lexical and acoustic modalities only leaving out
those that use visual and speaker sensitivity features in
combination with text and audio modalities. In addition,
we compared with only models that use the IEMOCAP
dataset. The models chosen for comparison used either
additive, multiplicative or multi-head attention mechanisms
in either one modality branch or a combination of them in a
multi-modality approach. These models also use single-level
fusion. Table 6 shows the performance comparison between
the proposed CoSTGA model and the existing approaches.
The existing approaches we compared the proposed CoSTGA
model with are; MDRE [24], STSER [25], LAMER [26],
IEmoNet (BE) proposed in [27], the model proposed in [30]
that uses mixed files of the IEMOCAP dataset and the
hierarchical approach for bimodal SER model proposed
in [28]. The model in [28] handles the task by use of early
fusion and subsequent progressive hierarchical deep learning-
based SER. The I[EmoNet (BE) uses pre-trained language
models for the transcriptions in combination with audio
signals trained separately and combined in a late fusion
approach for SER.

It is shown that MDRE achieved a maximum average
recall of 71.8%, LAMER obtained 70.9% and 72.5%, STSER
72.05% and 71.06%, IEmoNet (BE) 72.05% and 74.98%
of unweighted and weighted accuracy respectively. The
model in [30] achieved 73.23% of recall and 73.32% of
F1 score on mixed files of the IEMOCAP dataset. 74.5%
of unweighted accuracy and 73.2% of recall were reported
in [28]. These results place the accuracy of our proposed
CoSTGA model higher than the existing approaches by a
range of 1.32% to 4.92%, 0.52% to 4.44%, 2.12% to 3.52%,
2.25% in terms of unweighted accuracy, weighted accuracy,
recall and F1 score respectively. This is an indicator that
multi-level fusion models that concurrently and progressively
learn spatial, temporal and semantic intra and cross-modality
feature representations improve performance in SER.

VI. CONCLUSION

In this paper, we investigated the significance of multi-
level fusion for SER and proposed the CoSTGA model
which leverages the benefits of fusing concurrently learned
spatial, temporal and semantic feature representations in a
multi-level approach. The proposed model learns intra and
cross-modality feature of acoustic and lexical modalities at
two fusion levels using model-level fusion. A combination
of traditional deep learning techniques and multi-head
attention mechanisms were used. The impact and significance
of each of the concurrent feature representations were
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evaluated. The proposed CoSTGA model’s performance
was compared with the existing approaches in terms of
weighted and unweighted accuracy, recall, AUC and F1
score. The results show that a multi-level fusion of con-
currently learned spatial, temporal and semantic feature
representations improves the effectiveness and robustness
of SER models. We plan to explore concurrent feature
learning of spatial, temporal and semantic tendencies in
all modalities for emotion recognition since human emo-
tional states encompass other modalities like visual and
physiological cues.
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