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ABSTRACT 

OBJECTIVES: This study looked at how CMSO affected male Wistar albino rats' liver damage 

caused by bisphenol A. 

METHODS: The standard HPLC method was used to assess the CMSO's phenolic content. Then, six 

(n = 8) groups of forty-eight (48) male Wistar rats (150 20 g) each received either CMSO or olive oil 

before being exposed to BPA for 42 days. Groups: A (one milliliter of olive oil, regardless of weight), 

B (BPA 100 mg/kg body weight (BW)), C (CMSO 7.5 mg/kg BW), D (CMSO 7.5 mg/kg BW + BPA 

100 mg/kg BW), E (CMSO 5.0 mg/kg BW + BPA 100 mg/kg BW), and F (CMSO 2.5 mg/kg BW + 

BPA 100 mg/kg BW). 

KEY FINDINGS: A surprising abundance of flavonoids, totaling 17.8006 10.95 g/100 g, were found 

in the HPLC data. Malondialdehyde, liver enzymes, reactive oxygen species, total bilirubin, and direct 

bilirubin levels were all significantly elevated by BPA (p 0.05). Additionally, nuclear factor-B, 

interleukin-6, interleukin-1, tumor necrosis factor, and histological alterations were all considerably (p 

0.05) caused by BPA. The altered biochemical markers and histology were, however, noticeably 

recovered by CMSO to a level that was comparable to the control. 

CONCLUSION: Due to the abundance of flavonoid components in the oil, CMSO protects the liver 

from BPA-induced hepatotoxicity by lowering oxidative stress and inflammatory reactions. 

 

Keywords: Bisphenol A, Hepatotoxicity, Oxidative stress, Anti-inflammation, Antioxidant, 

Cucumeropsis mannii, Flavonoids profile. 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/rpsppr/advance-article/doi/10.1093/rpsppr/rqad033/7324850 by guest on 02 N

ovem
ber 2023



Acc
ep

ted
 M

an
us

cri
pt

  

INTRODUCTION 

The recent increase in environmental pollution poses a serious health challenge. According to 

[1], bisphenol A [BPA; 2, 2-bis (4-hydroxyphenyl) propane] is a well-known environmental 

contaminant and is becoming more prevalent globally. BPA is an endocrine disruptor with 

estrogenic and thyroid hormone-like effects [2]. Several studies have found that BPA 

exposure promotes hepatotoxicity and causes oxidative damage via various mechanisms 

[3,4]. Other studies have connected BPA exposure to an increased risk of thyroid 

dysfunction, cardiovascular disease, obesity, and type II diabetes [5,6]. Over the years, 

several studies have shown that BPA is toxic even at low doses [7]. BPA has been shown in 

studies to cause liver, kidney, brain, and epididymal sperm damage in rodents and other 

organ damage by forming reactive oxygen species (ROS) [8, 9]. ROS plays a crucial role in 

pathological defense mechanisms. However, excessive production of free oxygen radicals can 

damage tissues and proteins, resulting in structural changes and functional inactivation of 

many enzymes and receptor proteins involved in cell signaling [10]. However, 

epidemiological studies of BPA continue to be controversial. Because of growing concerns 

about the safety of BPA, its use in plastic bottles for infants was prohibited by various health 

agencies, including Health Canada in 2009, the European Union in 2011, and the US Food 

and Drug Administration (FDA) in 2012, and completely banned in food containers in France 

in 2015 [11]. 

Cucumeropsis mannii (African Melon), popularly known as "egusi" [12], is the true 

indigenous egusi of West Africa, and its common names include "Egusi" in Igbo, "Elegushi" 

in Yoruba, "Agushi" in Hausa, and "Ashi" in the Izzi dialect of Ebonyi State. In English, it is 

called Mann's cucumeropsis and white-seed melon. In some Nigerian savanna belts, African 

melon, a cucurbit crop with a fibrous and shallow root system, is typically planted alongside 

early maize and yam [13]. C. manni seed is consumed in different ways by different people. 

A traditional soup known as "Egusi soup" in Cameroon, Nigeria, and Benin and "Pistachio 

soup" in Côte d'Ivoire is thickened in Sub-Saharan Africa using C. mannii [14, 15]. The seed 

of egusi (Cucumeropsis mannii) is also a rich source of protein (31.4%), essential amino 

acids, fat (52.5%), essential fatty acids, minerals, and vitamins [16, 17]. The fatty acids that it 

contains in abundance are linoleic (62.42%), oleic (15.90%), palmitic (10.27%), and stearic 

(10.26%) [18]. Seed oils are one of the sources of nutritional oil with industrial and 

pharmaceutical importance [19]. Interestingly, there is evidence that Cucumeropsis mannii 

contains high levels of polyunsaturated fatty acids (PUFAs) and essential amino acids, 

implying that the seed could be a promising nutritional supplement repository [16, 17, 18]. 

The therapeutic potential of PUFAs and phospholipids in maintaining erythrocyte membrane 

integrity, function, and regenerative capabilities [19, 20, 21, 22, 23] could be plausible in the 

maintenance of liver function. Therefore, the use of Cucumeropsis mannii seed oil (CMSO) 

can be invaluable in the search for better treatment for liver diseases. According to [24], the 

seeds of C. mannii are highly valued as food in Africa. Furthermore, due to their chemical 

composition, C. mannii has many important medicinal properties and can be a source of 

nutraceuticals whose large-scale production will be ideal for the economic growth of a 

country. As a result, the current study investigates the effects of CMSO on bisphenol A-

induced hepatotoxicity in male Wistar albino rats. 
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Material and Method 

Materials 

Equipment and Instruments 

The major instrument and equipment used for this study were Hitachi 911 Chemistry 

Analyzer (Roche Hitachi),  Centrifuge (Pic, England), Local wooden Mortar and Pistol 

(Aba,Nigeria,) Grinder (Corona, Nigeria), Refrigerator (Kelvinator, Germany), pH meter 

(Pye, Unicam 293, England), Electronic balance (Model mp 300, USA), BS-2025T 

Biological Microscope (New York Microscope Company), Centrifuge machine (C-866-346-

6800, Chicago corporation Hammond), spectrophotometer (UV- 1601PC, Shimadzu Europe), 

Fluorescence spectrometer (HITACHI, Model No F7000, equipped with a FITC filter), Elmer 

LS-50B luminescence fluorescence spectrophotometer (New York Microscope Company, 

Ultrasound centrifuge machine (Pic, England), Dounce glass homogenizer (Pic, England), 

Bright-Line
®
 Hemacytometer (Pic, England), Electronic weighing balance (Pic, England), 

Incubator (Pic, England), Water bath (Pic, England), Micro-pipette of various sizes (Pye, 

Unicam 293, England), etc. 

Chemicals and Reagents 

The chemicals and reagents used were of good analytical grades. They include: 2-[4-(2 

hydroxyethyl) piperazin-1-yl] ethanesulfonic acid (HEPES), 2’-7’dichlorofluorescein (DCF), 

2’-7’dichlorofluorescin diacetate (H2DCF-DA), 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT), 5-thionitrobenzoic acid (TNB), 5-5’-dithiobis [2-

nitrobenzoic acid] (DTNB), Benzylamine solution  (Sigma), Bisphenol-A (Riedel-De 

HaenAGSeelze-Hannover, Germany via  Bristol Scientific) (Sigma), Bovine serum albumin 

(BSA), Copper(II) tetraoxosulphate (VI) pentahydrate (CuSO4.5H2O) (Sigma), Cyclohexane 

(Hi-Media), Cytochrome C  solution (SRL), Dihydrorhodamine 123 (DRH-123) (Sigma), 

Disulfde glutathione solution (GSSG), Ethanol, Ethyl acetate (Sigma), Ethylene diamine 

tetraacetic acid (EDTA, Sigma), Ethylene glycol bis(2-aminoethylethyl) tetraacetic acid 

(EGTA) (Sigma), Glucose solution, Glutathione peroxidase (GPx) (Sigma), Glutathione 

reductase (GR) (Sigma), Hydrochloric acid (HCl) (Sigma), Hydrogen peroxide solution 

(H2O2) (Sigma), Manganese superoxide dismutase (MnSOD) (Sigma), Bottle olive oil 

(Randolf pharmacy Ltd, Abakaliki, Ebonyi State), Thiobarbituric acid (TBA) (Sigma), 

Trichloroacetic acid (TCA) (Sigma), Tris buffer at pH 8.5 (SRL). 

Biological Materials 

 The biological materials used for the study were male Wistar Albino rats and Cucumeropsis 

mannii seed oil.  

Methods 

Experimental Animals 

The experimental animals used were Wister albino rats purchased from the Animal House of 

Faculty of  Veterinary Medicine, University of Nigeria, Nsukka, Enugu, Nigeria. The rats 

were kept in stainless steel rats cages in a well-ventilated animal house of the Biochemistry 

Department, Ebonyi State University, Abakaliki. They were acclimatized for seven days 

under good laboratory conditions. They were also allowed free access to standard rodent 

chow (Vital feed
®
, Grand Cereals Ltd, Jos, Nigeria) and water ad libitum. The procedures for 
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experimental studies were performed consistent with the National Institute of Health Guide 

for the Care and Use of Laboratory Animals (NIH Publications No. 80‐23, revised in 1996). 

The Department of Biochemistry Ethical Review Committee, Ebonyi State University, 

Abakaliki, Nigeria, approved the study and assigned an Approval Number 

(EBSU/BCH/ET/20/002). 

Collection, Classification, and Authentication of Plant Material 

The plant material used in this study was Cucumeropsis mannii Seed purchased from a 

market woman farmer in Nkwegu market, Abakaliki Local Government Area, Ebonyi state. 

The Cucumeropsis mannii specimen was classified with Voucher No: 42485/HNC and 

deposited at the Cameroon National Herbarium in Yaounde [24].  However, it was 

authenticated by Mr. O. E. Nwankwo, a plant taxonomist in the Department of Applied 

Biology of Ebonyi State University, Abakaliki, Nigeria.  

Extraction of Cucumeropsis mannii seed oil (CMSO) 

The Cucumeropsis mannii seeds were extracted using the methods of  [25], with 

modifications. The CMSO was peeled and then ground using a manual grinder (Corona). The 

oil from ground seeds was extracted locally by mechanical press using mortar and pestle. 

During extraction, warm water was added in drops at intervals to enhance the release of the 

oil since water will help to rupture the cells. The extracted oil was left to stand undisturbed to 

sediment in a corked bottle for 5-7 days before separation by decantation method to obtain a 

pure form of the oil which was stored in a separate bottle. 

Acute Toxicity of CMSO 

According to OECD/OCDE Guidelines no. 425, the acute toxicity study was carried out 

using the limit dose up and down method. Male albino Wistar rats (aged 2 months) were used 

in the experiment, and they were acclimatized to the laboratory condition for seven days 

before starting. A male rat was given 5 ml/kg of CMSO orally after an overnight fast. 

Following CMSO administration, the animal was closely monitored for the first 30 minutes 

for physical or behavioral changes, then for the next 24 h, and then every day for the next 14 

days. Food was given after 3 h of CMSO administration.  Since the first rat survived, four 

more male rats were recruited and fasted for 4 h. They were then given the same dosage of 

CMSO and subjected to the same stringent monitoring for the next 14 days for any signs of 

toxicity [26, 27, 28, 29]. Within the 24 h and 14-day testing periods, the rats did not exhibit 

any signs of gross physical or behavioral modifications such as hair erection, decrease in 

eating, or motor movements at the limit-test dose of 5 ml/kg. For this reason, based on OECD 

guideline No 425, 10 % of the limit dose (5 ml/kg) was chosen as the middle/intermediate 

dose, half of it (2.5 ml/kg) as the lower dose, and 1.5 times the middle dose (7.5 ml/kg) as the 

higher dose [29]. 

Quantitation of flavonoids profile using high-performance liquid chromatography 

(HPLC) 

Cucumeropsis mannii seed oil sample was used for flavonoids profile assay [30]. High-

performance liquid chromatography (HPLC) analysis for quantitation of the individual 

flavonoids was carried out on Waters 616/626 HPLC. The sample was separated isocratically 

on a reversed-phase LC 18 column at 5 mM (25 cm x 4.6 mm) (Supelco Inc. USA). The 

mobile phase consisted of 40 nm sodium phosphate dibasic heptahydrate and 20% 
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acetonitrile (v/v), (pH 6.5, adjusted with 85% phosphoric acid). The mobile phase was 

filtered through a 0.22 mm pore membrane filter and degassed before use. The column was 

equilibrated at 25
o
C at a flow rate of 0.85 mL/min. The injection volume was 25 mL. 

Standard solutions of the various flavonoid compounds were also prepared. Calibration 

standard samples were prepared from stock. Concentrations of the flavonoid compounds in 

the samples were determined by the Waters HPLC application pack [30, 28]. 

Experimental Design 

A total of forty-eight (48) male albino Wistar rats were randomly assigned into six (6) 

experimental groups of A, B, C, D, E, and F with eight (8) rats in each group. Groups A, B, 

and C are control groups while groups D, E, and F are the treatment groups. BPA in the 

formed pellet was dissolved into a solution of 5 g/100 ml olive oil. 

Group A: Normal control received 1 ml of olive oil 

Group B: Negative control (BPA intoxicated group) received 100 mg/Kg body weight  

Group C: Positive control (CMSO control) received 7.5 ml/kg body weight  

Group D: Treatment group 1 pre-administered 100 mg/kg body weight of BPA and treated 

with 7.5 ml/kg body weight of CMSO. 

Group E: Treatment group 2 pre-administered 100 mg/kg body weight of BPA and treated 

with 5 ml/kg body weight of CMSO. 

Group F: Treatment group 3 pre-administered 100 mg/kg body weight of BPA and treated 

with 2.5 ml/kg body weight of CMSO. 

Administration of both BPA and CMSO were concurrently by oral intubation once every day 

and the weights of animals across the group were also measured every seven (7) days for six 

weeks. 

Tissue Sample Collection 

After the trial, the animals were sacrificed by cervical dislocation under mild anesthesia. 

Blood samples were collected via the femoral vein’s cut. The liver of each member of the 

group was collected and placed in specimen bottles stored in ice and transferred to the 

laboratory within 3-6 h after the sacrifice for analysis.  

Determination of Biochemical Parameters 

Determination of liver enzyme activities in the rat liver 

ALP activity was assayed by colorimetric methods as described by [31]. The activity of ALT 

was assayed according to the method of [32]. 

Principle: The principle of this test was based on the hydrolysis of p-nitrophenyl phosphate 

to yield a phosphate and p-nitrophenol catalyzed by ALP. 

P-nitrophenyl phosphate + H2O       ALP      phosphate + p-nitrophenol 
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Procedures: Exactly 0.01 ml and 0.5 ml of the sample and reagents respectively were added 

to the micro-cuvette. The mixture was properly mixed and the initial absorbance was read 

again after 1, 2, and 3 minutes to get the changes in absorbance.  

Calculation: ALP (u/L) = 2760 x ∆A nm/minutes. 

Determination of Total Bilirubin Concentration 

Total bilirubin concentration was determined according to the method described by [33]. 

Principle: The principle was based on the colorimetric method whereby total bilirubin is 

determined in the presence of caffeine, which releases albumin-bound bilirubin by the 

reaction with diazotized sulphanilic acid. 

Procedure: Two cuvettes were prepared and arranged, the sample blank and the sample 

cuvette. Exactly 4 drops (200 µl) of reagent 1 were added to the two cuvettes followed by the 

addition of 1 drop (50 µl) of reagent two only to the sample cuvette. After that, 1000 µl and 

200 µl of reagent three and sample (serum) respectively were added to the two cuvettes. The 

cuvette was properly mixed and incubated for 10 minutes at 20-25
0
C. Finally, 1000 µl of 

reagent four was added to both sample blank and sample cuvette, mixed, and incubated for a 

further 5–30 minutes at 25
0
C and the absorbance of the sample against sample blank was read 

at the wavelength of 578 nm.  

Calculation 

Total Bilirubin (mg/dl) = 10.8 x ATB 

Determination of oxidative stress markers levels in the rat liver 

The ROS level in the liver homogenate was determined using Dichlorohydrofluorescein 

Diacetate (DCFDA) which was converted to DCF fluorescence by cell peroxides. 

Fluorescence levels were measured using a fluorimeter [34, 35]. Reduced glutathione (GSH) 

level in the liver homogenate was quantified by the method of [35]. Lipid peroxidation in the 

liver homogenate was determined by measuring thiobarbituric acid reactive substances 

(TBARS) expressed in terms of malondialdehyde (MDA) content using the method of [36]. 

Catalase (CAT) (EC. 1.11.1.6) activity in the liver homogenate was assayed by monitoring 

the decomposition of H2O2 at 240 nm as described by [37, 38]. Superoxide dismutase (SOD) 

(EC. 1.15.1.1) in the liver homogenate was determined by the method of [38].  The activity of 

glutathione peroxidase (GPx) (EC. 1.11.1.9) in the liver homogenate was determined using 

the method of [39]. 

Determination of inflammatory mediator levels in rat liver 

Liver interleukin-1 (IL-1), interleukin-6 (IL-6) (ERA31RB), tumor necrosis factor-α (TNF-α) 

(SL0722Ra), and nuclear factor-kappa B (NF-ĸB) (SL0537Ra) levels were determined using 

enzyme-linked immunosorbent assay (ELISA) kits (rat IL-6; NF-ĸB ELISA rat kit; rat TNF-α 

ELISA kit) purchased from Sunlong Biotechnology, Shanghai, China and EBIOSCIENCE, 

Inc., San Diego, California, USA following the manufacturer's protocols. In summary, the 

control standards and liver homogenate supernatant samples were pipetted into pre-coated 

wells with primary antibodies specific for rat cytokines and NF-κB. The immobilized primary 

antibody was allowed to react with the respective sample protein. Thereafter, wells were 

washed to remove the unbound substance. After washing, the enzyme-linked polyclonal 
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antibody was added to each well, followed by washing to remove any unbound antibody-

enzyme reagent. The wells were then filled with a substrate solution for the linked enzyme to 

allow color development. Following that, the levels of cytokine and NF-κB were calculated 

using the color intensity determined in an ELISA plate reader (BRIO POMEZIA, Rome, 

Italy) by spectrophotometry. 

Determination of Caspase-3 activity level in rat liver 

The level of Caspase-3 activity in liver tissue lysate was determined using rats’ assay kits 

following the manufacturer's protocols.  

Histopathological examination of rat liver 

The liver was placed in the Bouin's fluid for histopathological examination according to the 

methods of [35]. The liver was immediately removed and stored in 10% neutral buffered 

formalin for 48 hours before being dehydrated in ethanol and embedded in paraffin for a 

blind histopathological examination. The tissue was sectioned longitudinally with a 

microtome and stained for microscopic histopathological alterations with hematoxylin and 

eosin (H and E). A light microscope was used to examine the stained slides. 

Statistical Analysis 

Results were expressed as means ± standard deviation (SD). Data were analyzed using a one-

way analysis of variance (ANOVA), followed by Tukey’s multiple comparison post hoc test 

using SPSS statistical software, version 23.0 (SPSS Inc., Chicago, Illinois, USA). Differences 

at p < 0.05 were considered significant. Graphs were created using GraphPad Prism 5 

software (GraphPad Software, California, USA). 

Effect of CMSO on Plasma Liver Function Parameters in BPA–induced hepatotoxicity 

in rats 

Results showed that the activities of ALP, ALT, AST, levels of total bilirubin, and direct 

bilirubin were significantly (p < 0.05) increased in the blood after BPA administration in rats 

with a reduction in the level of albumin (Figure 1). However, a significant (p < 0.05) 

reduction in the activities of ALP, ALT, AST, levels of total bilirubin, and direct bilirubin 

were observed in rats that were co-administered BPA and CMSO with a significant (p < 0.05) 

elevation in albumin level as shown in Figure 1. 

Figure 1(a-f): Effect of CMSO on Liver function parameters in BPA-induced hepato-toxicity 

in albino rats. Data are shown as mean ± S.D (n = 6). Mean values with the different signs are 

significantly different at p < 0.05. BPA (Bisphenol A), CMSO (Cucumeropsis mannii Seed 

Oil). 

Effect of CMSO on oxidative stress markers in Liver in BPA–induced hepatotoxicity in 

rats 

BPA administration in rats significantly (p < 0.05) elevated the levels of ROS and MDA in 

the liver homogenates as shown in Figures 2 (e and f). Besides, BPA administration 

significantly (P < 0.05) decreased activities of CAT, SOD, GPx, and level of GSH in liver 

homogenates in rats Figure 2 (b-d). However, the levels of ROS and MDA in liver 

homogenate were significantly (P < 0.05) lowered when BPA and CMSO were co-

administered to the rats as shown in Figures 2 (e and f). Also, there was a significant (p < 
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0.05) increase in the level of GSH with co-administration of BPA and CMSO Figure 2(a). 

Activities of CAT, SOD, and GPx were significantly (p < 0.05) elevated when BPA and 

CMSO were co-administered in rats as shown in Figure 2 (c and d). No significant difference 

(p < 0.05) was observed among the co-administered groups. 

Figure 2(a-f): Effect of CMSO on Oxidative stress markers in BPA-induced hepatotoxicity 

in albino rats. Data are shown as mean ± S.D (n = 6). Mean values with the different signs are 

significantly different at p < 0.05. BPA (Bisphenol A), CMSO (Cucumeropsis mannii Seed 

Oil) 

Effect of CMSO on inflammatory mediators’ levels such as interleukin-1β (IL-1β), 

interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-ĸB), 

and caspase-3 activity in Liver in BPA–induced Hepato-toxicity in rats 

BPA administration in rats significantly (p < 0.05) up-regulated the liver expression of 

nuclear factor-kappa B (NF-ĸB) and caspase-3 activity along with increased levels of 

interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) but the co-

administration of BPA+CSMO in rats significantly (p < 0.05) lowered the levels of these 

inflammatory markers and activity of apoptotic marker in rat’s liver (Figure 3). 

Figure 3 (a-e): Effect of CMSO on inflammatory markers and Caspase- 3 in BPA-induced 

hepato-toxicity in albino rats. Data are shown as mean ± S.D (n = 6). Mean values with the 

different signs are significantly different at p < 0.05. BPA (Bisphenol A), CMSO 

(Cucumeropsis mannii Seed Oil). 

Effect of CMSO on Liver glycogen level and Bodyweight in BPA–induced 

hepatotoxicity in rats 

BPA administration in rats significantly (p < 0.05) decreased liver glycogen storage but the 

co-administration of BPA+CSMO in rats significantly (p < 0.05) increased the level of 

glycogen in rat liver (Figure 4a). BPA administration in rats significantly (p < 0.05) 

decreased the weights of the rats (Figure 4b).  The rats’ weights significantly (p < 0.05) 

increased after co-administration of BPA + CMSO in the treatment groups (Figure 4b). 

Figure 4 (a & b): Effect of CMSO on glycogen level and Bodyweight in BPA-induced 

hepato-toxicity in albino rats. Data are shown as mean ± S.D (n = 6). Mean values with the 

different signs are significantly different at p < 0.05. BPA (Bisphenol A), CMSO 

(Cucumeropsis mannii Seed Oil). 

Effect of CMSO on Histology of the liver in BPA–induced hepatotoxicity in rats 

Photomicrograph of the liver induced with BPA (x400) (H/E) shows m a r k e d  

degeneration with severe intrahepatic inflammation (HI) the overall features are consistent 

with (chronic hepatitis) (Plates 1-6). 

Plate 1: Photomicrograph of Group  1 section of the liver (x400) (H/E) shows well 

perfuse normal hepatic architecture with the central vein (CV) and well-outlined 

hepatocyte(H). 

 

Plate 2: Photomicrograph of Group 2 section of liver induced with BPA only (x400) (H/E) 

shows severe degeneration with severe intrahepatic inflammation (HI) the overall features 

are consistent with (chronic hepatitis). 
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Plate 3: Photomicrograph of Group 3 section of liver administered with 7.5 ml/kg b.w of 

CMSO only (x400) (H/E) shows mild congestion of the central vein (CCV) otherwise normal. 

 

Plate 4: Photomicrograph of Group 4 section of liver induced with BPA and treated 

with7.5ml/kg of CMSO (x400) (H/E) shows moderate regeneration with mild fatty change 

(FC) and mild intrahepatic infiltration of the inflammatory cell (IIC). 

 

Plate 5: Photomicrograph of Group 5 section of liver induced with BPA and treated with 5.0 

ml/kg of CMSO (x400) (H/E) shows mild to moderate regeneration with a mild focal area of 

intrahepatic hemorrhage (IHH) and moderate focal aggregate inflammatory cell (FAIC). 

 

Plate 6: Photomicrograph of Group 6 section of liver induced with BPA and treated 

with 2.5 ml/kg of CMSO (x400) (H/E) shows mild regeneration with moderate 

focal aggregate Intra (FAI) and portal inflammatory cell (AIPC). 

 

Discussion 

In the current investigation, the flavonoid profile of Cucumeropsis mannii seed oil revealed 

an intriguing result (Table 1) showing a myriad of nutraceuticals with strong antioxidant 

effects perhaps attributed to the mitigations of the BPA-induced hepatotoxicity. Earlier 

studies on the impact of bisphenol A (BPA) on human health concluded that the toxic effects 

of BPA may be due to increased oxidative stress [41,42]. We established BPA-induced 

hepatotoxicity in a rat model by administering 100 mg/kg body weight of BPA for 42 days. 

The presence of liver damage or disease was determined using liver function tests such as 

ALT, AST, ALP, bilirubin, and albumin. BPA causes oxidative stress and lipid peroxidation 

by increasing hepatic damage and disrupting the integrity of cellular membranes, which leads 

to cytoplasmic liver enzyme leakage [43]. According to the current study, BPA significantly 

raised the levels of ALT and AST, ALP, plasma total bilirubin, and plasma direct bilirubin. 

These results are congruent with the previous results by [44] that showed BPA treatment 

increased the activities of ALT, AST, and ALP and caused significant defects in liver 

morphology. Additionally, patients with liver disease have higher BPA levels than healthy 

people [45] This finding raises the possibility that BPA exposure and liver health are related. 

The findings of the histopathological analysis conducted in the current study corroborate 

those of the biochemical tests (Plates 1-6). BPA treatment significantly altered the 

architecture of the liver in comparison to control livers, causing cellular infiltration, the 

development of large cytoplasmic vacuoles and hepatic sinusoids, as well as an increase in 

Kupffer cells. Hepatic lipid accumulation and oxidative stress, followed by liver injury and 

inflammation, are pathogenic events for non-alcoholic steatohepatitis [46]. Interestingly, our 

research showed that administering CMSO to rats has strong hepatoprotective effects against 

BPA-induced liver damage. Furthermore, CMSO improved the secretory function and 

structural integrity of liver cells. The serum ALT and AST activities markedly decreased and 

prominently decreased the total bilirubin level, producing results lower than the control and 

BPA-treated groups (Figure 1). These results are consistent with those emphasized by [46], 

who demonstrated that sesamin effectively reduced serum ALT and AST and alleviated 

hepatic histological changes. The hepatoprotective effects of CMSO may be due to its anti-

inflammatory activities. C. manni seed is a known inhibitor of arachidonic acid synthesis 

[18]. It reduces oxidative stress, pro-inflammation, and apoptosis [47, 48, 49, 50, 51]. CMSO 

has general anti-inflammatory effects, which are demonstrated by its capacity to lower 
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inflammatory mediators. The phenolic compounds in CMSO (Table 1), which contribute to 

its hepatoprotective potential, may be responsible for the antioxidative effect of CMSO and 

its effects on lowering lipid peroxidation. Thus, the pathogenic events linked to BPA-induced 

steatohepatitis may decline in tandem with the decrease in hepatic lipid accumulation. 

In the current study, BPA caused hepatic oxidative stress and decreased the secretory 

function and integrity of the liver, as indicated by increased hepatic malondialdehyde (MDA) 

level and decreased antioxidant system. BPA significantly reduced glutathione, glutathione 

peroxidase (GPx), glutathione reductase (GR), and superoxide dismutase (SOD) activities. 

These findings are in line with those made by [52], who found that BPA exposure damages 

human red blood cells by inducing oxidative stress. Another previous study found that BPA 

increased lipid peroxidation and decreased the activity of antioxidant defense enzymes 

produced in rat livers [53]. The reduction in glutathione (GSH) levels caused by BPA could 

be attributed to its conjugation with BPA toxic metabolites and oxidation to oxidized 

glutathione [54]. According to [55], some lipid peroxidation end products, MDA and 4-

hydroxynonenal, can alter the mitochondrial enzyme activity and deplete the glutathione 

pool. Reduced GSH levels may lead to decreased GPx activity [56]. Reduced GPx activity is 

associated with an increase in hepatic hydrogen peroxide (H2O2) as well as the direct 

inhibition of SOD activity [57]. BPA reacts with oxygen radicals, decomposing them into 

several reactive metabolites with high oxidant activity [58]. These metabolites increase 

reactive oxygen species (ROS) production. They also increase H2O2 levels and reactive 

thiobarbituric acid substances, which inhibit antioxidative enzyme activity [58]. The ROS 

caused by BPA may accelerate peptide chain cleavage and amino acid cross-linking in 

enzymes, resulting in a change or loss of enzyme activity [59]. Thus, the mechanism of BPA-

induced oxidative damage may be primarily caused by the inhibition of the antioxidant 

enzyme system, leading to an increase in ROS content. 

In contrast, the current study indicated that CMSO attenuated BPA-induced oxidative stress 

by decreasing MDA, increasing the specific activities of GPx, CAT, and SOD, and increasing 

the level of GSH in the livers of the treated rats. Similarly, the present study also revealed 

that CMSO attenuated measured parameters to a level similar to the control (Figure 2). This 

observation may be due to its free radical scavenging properties. Our findings are consistent 

with those of [60], who discovered that sesame lignans increased GPx and GR activity while 

decreasing MDA levels in rats treated with LPS. In addition, [61-62] reported that sesamin 

decreased ROS and MDA production in the liver extract of CCL4-treated mice. The authors 

concluded that the augmented SOD activity induced by sesame lignans enhances the ability 

of hepatic cells to decompose superoxide anions produced by BPA into H2O2, preventing the 

further generation of free radicals. Subsequently, GPx broke down H2O2, which uses GSH as 

a reducing agent. Therefore, the increased GPx activity and GSH levels observed in the 

present study show that CMSO protects liver tissue against oxidative damage. 

Robust evidence confirms the contribution of oxidative stress to inflammation, a biochemical 

response of the body towards cell injury [62].  In the current study, BPA administration 

increased the levels of inflammatory markers such as interleukin-1 (IL-1), interleukin-6 (IL-

6), tumor necrosis factor-α (TNF-α), and nuclear factor-kappa B (NF-B). However, co-

administration of BPA with CMSO decreased the levels of these inflammatory markers 

except for interleukin-6 (Figure 3). These findings are consistent with reports in the literature 

indicating a link between oxidative stress, proinflammation, and apoptosis [63, 64, 65, 66, 67, 

68]. Ordinarily, nuclear factor-kappa κB (NF-κB) is a redox-sensitive transcription factor; its 

expression is inducible in all cells and regulates many genes involved in inflammatory 
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responses (Nna et al., 2017). BPA-induced oxidative stress may have triggered the expression 

of the inhibitor of kappa B kinase (IKK) for degradation of the inhibitor of kappa B (IκB) to 

increase the DNA-binding affinity of NF-κB. This observation may be because NF-κB was 

activated for translocation from the cytoplasm to the nucleus to regulate the expression of 

multiple target genes, such as TNF-α, IL-2β, and IL-6β [69]. Moreover, triggering the 

activation of the NF-κB signaling pathway plays a critical role in several liver diseases, 

including hepatitis, liver fibrosis, cirrhosis, and hepatocellular carcinoma [70]. Consequently, 

NF-κB is activated for translocation from the cytoplasm to the nucleus to regulate the 

expression of multiple target genes, such as TNF-α, IL-2β, and IL-6β [71]. This result has 

justified studies that hypothesized that inhibition of the NF-ĸB signaling pathway could block 

excess IL-6β, TNF-α, IL-1β, and NO level [72, 73, 74, 75, 76]. 

Caspases are crucial mediators of programmed cell death (apoptosis). Among them, caspase-

3 is a frequently activated death protease, catalyzing the specific cleavage of many cellular 

proteins. In the present study, BPA administration in rats increased the level of caspase-3 

activity, but co-administration of BPA with CMSO lowered the level of caspase-3 expression 

in a dose-dependent manner (Figure 4a). However, BPA activation of caspase-3 was due to 

oxidative stress and cytokine (IL-6β, TNF-α, and IL-1β) overexpression. CMSO 

administration prevented oxidative stress and activation of NF-ĸB, which suppressed the 

expression of pro-inflammatory cytokines. Hence, CMSO reduced the expression of caspase-

3 in hepatocytes. Our findings correlate with previous studies, which suggest that BPA 

induces apoptosis via the elevation of caspase-3 in mice  [77] and goat testis Sertoli cells 

[78]. Similarly, the present study is consistent with [72], which reported that fenugreek 

(Trigonella foenum-graecum) modulated caspase-3 on bisphenol-A induced testicular 

damage in mice. Thus, CMSO exhibits antioxidant, anti-inflammatory, and antiapoptotic 

properties in rats by suppressing NF-B/IL-2/IL-6/TNF-α and caspase-3. 

Glycogen is a branched polymer of glucose, primarily stored in the liver and skeletal muscle, 

which provides glucose to the bloodstream during fasting periods, as well as to muscle cells 

during muscle contraction [70]. BPA modulates glucose utilization in muscles and interferes 

with liver tissue function. In addition to peripheral tissues, previous research has shown that 

BPA affects neuroendocrine regulation of glucose metabolism via the Central Nervous 

System, promoting glucose metabolism dysfunction such as glucose intolerance and insulin 

resistance. As a result, BPA exposure appears to be a significant risk factor for obesity and 

metabolic syndrome [60]. In the present study, BPA administration in rats decreased liver 

glycogen storage, but CMSO treatment in rats increased glycogen levels in the liver of rats 

(Figure 4a). Our result is consistent with a study by [61] that reported the effects of Bauhinia 

forficata on glycemia, lipid profile, hepatic glycogen content, and oxidative stress in rats 

exposed to Bisphenol-A. Evidence suggests that BPA exposure perturbs insulin signaling and 

glucose transport in the brain; therefore, it might be a risk factor for brain insulin resistance 

[62]. 

Surprisingly, BPA administration also decreased the body weight of the rats in the present 

study. In parallel, the body weight of the rats increased after co-administration of BPA and 

CMSO in the treated groups (Figure 4b). Findings in the current study correlated with 

previous reports on the effects of phytocompounds from natural extracts and seed oil on body 

weight in BPA-induced testicular toxicity. Naringin (a flavonoid) [63], Cordyceps militaris 

[64], Eruca Sativa [65], Trigonella foenum-graecum [66], Lycopene (carotenoid) [67], 

Lespedeza cuneata [66], and Aloe vera [66] all improved the body weight in vivo and in 

vitro. However, in vivo studies have shown that fetal exposure to BPA at levels equal to or 
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lower than the established daily human safe dose (50 µg BPA/kg BW/day) increases body 

weight and postnatal growth [67]. In another study, pregnant rodents given 10 mg/L of BPA 

orally had tissue levels of 10–25 ng/g of BPA, which is comparable to human samples. Rats 

exposed to BPA caused offspring obesity, adipocyte hypertrophy, and increased adipogenic 

and lipogenic factors [68]. In vitro incubation of pre-adipocytes from rats with BPA increased 

their number, adipogenic transcription factors, and TNF-α [69]. In a similar study, rats 

exposed to 0.5 µg/kg BW/day of BPA orally from gestational day 3.5 to postnatal day 22, an 

amount 8–10 times lower than the European Food and Safety Authority's daily tolerable dose, 

had higher plasma triglyceride concentrations and inguinal WAT adipocyte density in 

offspring [70]. Therefore, the decrease in body weight after BPA intoxication in the current 

study could be a feedback response to tissue proliferation via mechanistic elevation of 

apoptotic factors such as inflammatory markers and caspase-3. Important molecules, such as 

proteins in rats, were protected from damage by CMSO. Hence, CMSO improved the body 

weight of rats by suppressing pro-inflammatory cytokines through antioxidant activities and 

the regenerative potentials of the essential lipids present. 

CONCLUSIONS 

The present study demonstrates the ability of Cucumeropsis mannii seed oil (CMSO) to 

protect rats from BPA-induced hepatotoxicity. Our findings support previous reports on BPA-

induced oxidative stress and inflammation. However, we demonstrate for the first time that 

CMSO's antioxidant potential can help to mitigate liver damage by lowering the production 

of inflammatory mediators. Therefore, CMSO could be useful in the clinical management of 

BPA-induced hepatotoxicity in patients with liver diseases. 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/rpsppr/advance-article/doi/10.1093/rpsppr/rqad033/7324850 by guest on 02 N

ovem
ber 2023



Acc
ep

ted
 M

an
us

cri
pt

  

List of Abbreviations 
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Figure 1(a-f): Effect of CMSO on Liver function parameters in BPA-induced hepato-toxicity 

in albino rats. Data are shown as mean ± S.D (n = 6). Mean values with the different signs are 

significantly different at p < 0.05. BPA (Bisphenol A), CMSO (Cucumeropsis mannii Seed 

Oil). 

Figure 2(a-f): Effect of CMSO on Oxidative stress markers in BPA-induced hepatotoxicity 

in albino rats. Data are shown as mean ± S.D (n = 6). Mean values with the different signs are 

significantly different at p < 0.05. BPA (Bisphenol A), CMSO (Cucumeropsis mannii Seed 

Oil) 

Figure 3 (a-e): Effect of CMSO on inflammatory markers and Caspase- 3 in BPA-induced 

hepato-toxicity in albino rats. Data are shown as mean ± S.D (n = 6). Mean values with the 

different signs are significantly different at p < 0.05. BPA (Bisphenol A), CMSO 

(Cucumeropsis mannii Seed Oil). 

Figure 4 (a & b): Effect of CMSO on glycogen level and Bodyweight in BPA-induced 

hepato-toxicity in albino rats. Data are shown as mean ± S.D (n = 6). Mean values with the 

different signs are significantly different at p < 0.05. BPA (Bisphenol A), CMSO 

(Cucumeropsis mannii Seed Oil). 

Plate 1: Photomicrograph of Group  1 section of the liver (x400) (H/E) shows well 

perfuse normal hepatic architecture with the central vein (CV) and well-outlined 

hepatocyte(H). 

Plate 2: Photomicrograph of Group 2 section of liver induced with BPA only (x400) (H/E) 

shows severe degeneration with severe intrahepatic inflammation (HI) the overall features 

are consistent with (chronic hepatitis). 

Plate 3: Photomicrograph of Group 3 section of liver administered with 7.5 ml/kg b.w of 

CMSO only (x400) (H/E) shows mild congestion of the central vein (CCV) otherwise normal. 

Plate 4: Photomicrograph of Group 4 section of liver induced with BPA and treated 

with7.5ml/kg of CMSO (x400) (H/E) shows moderate regeneration with mild fatty change 

(FC) and mild intrahepatic infiltration of the inflammatory cell (IIC). 

Plate 5: Photomicrograph of Group 5 section of liver induced with BPA and treated with 5.0 

ml/kg of CMSO (x400) (H/E) shows mild to moderate regeneration with a mild focal area of 

intrahepatic hemorrhage (IHH) and moderate focal aggregate inflammatory cell (FAIC). 

Plate 6: Photomicrograph of Group 6 section of liver induced with BPA and treated 

with 2.5 ml/kg of CMSO (x400) (H/E) shows mild regeneration with moderate 

focal aggregate Intra (FAI) and portal inflammatory cell (AIPC). 
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Effect of CMSO on Plasma Liver Function Parameters in BPA–induced hepatotoxicity 

in rats 

Results showed that the activities of ALP, ALT, AST, levels of total bilirubin, and direct 

bilirubin were significantly (p < 0.05) increased in the blood after BPA administration in rats 

with a reduction in the level of albumin (Figure 1). However, a significant (p < 0.05) 

reduction in the activities of ALP, ALT, AST, levels of total bilirubin, and direct bilirubin 

were observed in rats that were co-administered BPA and CMSO with a significant (p < 0.05) 

elevation in albumin level as shown in Figure 1. 

 

Table 1: Flavonoids Profile of CMSO (Cucumeropsis mannii Seed Oil) 

S/N Flavonoids Concentration 

1 Hesperidin 0.0299 ± 0.01 

2 Nanirutin 0.4975 ± 0.24 

3 Neoriocitin 0.3235 ± 0.12 

4 Poncirin 1.5138 ± 0.72 

5 Didymin 0.0886 ± 0.04 

6 Eriocitrin 0.0357 ± 0.02 

7 Rhoifolin 0.1480 ± 0.07 

8 Diosmin 0.0643 ± 0.03 

9 Nobiletin 1.4255 ± 0.64 

10 Acacetin 0.1772 ± 0.08 

11 Raxifolin 0.0160 ± 0.07 

12 Sinerisetrin 0.0355 ± 0.02 

13 Tangeretin 0.5906 ± 0.27 

14 Neodiosmin 0.0462 ± 0.03 

15 Naringin 0.5885 ± 0.42 

16 Naringinenin 0.0329 ± 0.02 

17 Quercetin 0.0133 ± 0.01 

18 Eriodictyol 0.0553 ± 0.04 

19 Myricetin 0.0239 ± 0.02 

20 Kaempferol 0.5314 ± 0.38 

21 Apigenin 0.0660 ± 0.01 

22 Isorharmnetic 0.0060 ± 0.00 

23 Luteolin 0.0132 ± 0.01 

24 Daidzein 0.2202 ± 0.16 

25 Genistein 0.1881 ± 0.20 

26 Glycitein 2.3906 ± 2.50 

27 Anthocyanine 0.1343 ± 0.14 

28 Catechin 0.0538 ± 0.06 

29 Epicatechin 0.2241 ± 0.23 

30 Thearflarins  0.0973 ± 0.01 

31 Thearubigins 2.1581 ± 2.26 

32 Epigallocatechin 0.2681 ± 0.28 

33 Epicatechin gallate 0.0243 ± 0.03 

34 Epigallocatechin gallate 0.0535 ± 0.06 

35 Proanthocyanidins 0.8944 ± 0.94 
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36 Hesperetin  0.3335 ± 0.20 

37 Rhamnazin 4.239 ± 2.50 

38 Taxifolin 0.2378 ± 0.06 

39 Fisetin 0.0955 ± 0.06 

40 Total Flavonoids 17.8006 ± 10.95 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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