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Abstract. In this study, we investigated the time-independent dynamics (disc structure, forces and torques)

of a quasi-Keplerian disc around a millisecond pulsar (MSP) with an internal dynamo. We considered the

disc around a MSP to be divided into the inner, middle and outer regions. By assuming that the disc matter

flows in a quasi-Keplerian motion, we derived analytical equations for a complete structure (temperature,

pressure, surface density, optical depth and magnetic field) of a quasi-Keplerian thin accretion disc, and the

pressure gradient force (PGF). In our model, the MSP-disc interaction results into magnetic and material

torques, such that for a given dynamo (�) and quasi-Keplerian (n) parameter, we obtained enhanced spin-up

and spin-down torques for a chosen star spin period. Results obtained reveal that PGF results into episodic

torque reversals that contribute to spinning-up or spinning-down of a neutron star, mainly from the inner

region. The possibility of a quasi-Keplerian disc is seen and these results can explain the observed spin

variations in MSPs like SAX J1808.4-3658 and XTE J1814-338.

Keywords. 97.80.Jp X-ray binaries—97.60.Gb pulsars—97.10.Gz accretion and accretion discs.

1. Introduction

The study of accretion-powered millisecond pulsars

was inaugurated in the 1970s by the discovery of the

4.8 s X-ray pulsations from Centaurus X-3 (Cen X-3)

(Giacconi et al. 1971). Over a period of time, Cen X-3

showed peculiar spectral structures and was found to

be a source of variable energy emissions. Thereafter,

observations of shorter period pulsations (1.2 s) were

observed from Hercules X-1 (Her X-1) (Tananbaum

et al. 1972) and on the millisecond-scale, a 2.494 ms

pulsation was observed for SAX J1808.4-3658 (in ’t

Zand et al. 2001). Because of this rapid period

change, pulsars are both theoretically and observa-

tionally puzzling astronomical objects in ascertaining

their spin periods (Camenzind 2007). They are

believed to be old, rapidly rotating neutron stars which

have been spun up or recycled back as radio pulsars

through accretion of matter from a companion star in a

close binary system (Alpar et al. 1982; Bhattacharya
& van den Heuvel 1991; Wijnands & van der Klis

1998).

Accretion powered MSPs (APMSPs) are known to

have magnetic surface field of the order of 108–109 G

(Backer et al. 1982), which is less than that of a

typical X-ray pulsar. Consequently, the ionized gas in

the pulsar magnetosphere is brought into corotation

closer to the stellar surface (Psalts & Chakrabarty

1999) and is channeled along field lines to the polar

caps, releasing its potential and kinetic energy, mostly

in X-rays (Shapiro & Teukolsky 2004). As a result of

the energy released, the accretion disc temperature

reaches such a high temperature that gas pressure is

far less than radiation pressure. They therefore behave
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uniquely when the accreting plasma is threaded by the

stellar magnetic field (Wijnands 2004; Naso & Miller

2010, 2011; Tessema & Torkelsson 2011; Naso et al.
2013).

Firstly, APMSPs were observed to exhibit kilohertz

quasi-periodic oscillations (kHz QPOs) (van der Klis

et al. 1996) as well as millisecond coherent pulsations

(‘‘burst oscillations’’) (Wijnands 2004; Bildsten et al.
2006), providing evidence for weak magnetic neutron

stars. Secondly, in the Tessema and Torkelsson (2011)

(hereafter TT11) dynamomodel, they found out that the

accretion disc inAPMSPs is truncated at a larger radius,

thus increasing the lever arm between the edge of the

disc and the neutron star, resulting into enhanced tor-

ques. Also, Naso et al. (2013) indicated that some

regions of the disc around MSPs, outward of the coro-

tation radius (rotating more slowly than the neutron

star), were found to contribute to spinning up the neu-

tron star. These findings are crucial in explaining the

large spin changes that have been observed in some of

the APMSPs such as SAX J1808.4-3658 (Wijnands &

van der Klis 1998; Chakrabarty &Morgan 1998), XTE

J1751-305 (Markwardt et al. 2002) and XTE J1814-

338 (Haskell & Patruno 2011).

In a strong magnetic ðBJ1011Þ G accreting neutron

star model (Ghosh & Lamb 1979a), the star-disc

interaction region consists of two distinct parts: the

outer broad transition zone and the inner transition

zone. In the former region, the angular velocity is

Keplerian, and the effective viscous stress is dominant

compared to the magnetic stress associated with the

twisted field lines. The magnetic stresses in this region

attempt to force the disc material into corotation with

the neutron star, and this results into spin-down tor-

ques (Ghosh & Lamb 1978). This torque was re-

assessed by Wang (1987) to give a more realistic

result than in Ghosh and Lamb (1979a). According to

Ghosh and Lamb (1979b), the other part of the disc is

narrow and it is where matter is brought into corota-

tion with the neutron star, having magnetic stress

dominating over viscous stress. This region plays a

significant role leading to different observational

properties of X-ray pulsars (Yi et al. 1997). According
to TT11, these local divisions of the accretion disc

cannot suit the observed properties of weakly mag-

netized ðB.1011Þ G fast rotating MSPs.

A compelling model of disc accretion around MSPs

was suggested by TT11 with an internal dynamo. The

dynamo is a result of a physical phenomena in the

accretion disc, with the ability of enhancing the

magnetic torques exerted on the neutron star (Tessema

& Torkelsson 2010). Like in the Shakura and Sunyaev

(1973) model, the TT1 model divides the disc into

three regions, depending on matter interactions with

the stellar magnetic fields. The inner region experi-

ences stronger magnetic stresses which affect angular

momentum transport than in the outer region, which is

predominantly affected by viscous stresses (Ghosh &

Lamb 1978). Additionally, besides the thermal insta-

bility and radiation pressure instability, the dissipation

associated with plasma motion across the magneto-

sphere makes the region to have a different accretion

flow rate from other regions (Pringle 1981). To sum it

all, the TT1 model considered the outer region as

dominated by gas pressure and free-free opacity, the

middle region with gas pressure and electron scatter-

ing opacity, while in the inner region radiation pres-

sure dominates over the gas pressure with electron

scattering as the main source of opacity. The corre-

sponding suitable flow rates were set to 0:012�
1014 kg s�1 for outer, and 0:12� 1014 kg s�1 and 1:5�
1014 kg s�1 for middle and inner regions respectively

in the same model.

The TT11 results show that the dynamo action

exerts different torques in the three regions and these

are capable of explaining spin variations in MSPs.

However, in the TT11 model, pressure gradient force

(PGF) effects in the equation of motion were not

considered. In a pioneering study on the effect of PGF

for a disc around a black hole, Hoshi and Shibazaki

(1977) showed that the PGF alters the structure of a

disc. Pressure gradients in an accretion disc result

from internal stresses caused by the surrounding

streaming fluid (Frank et al. 2002). Recently, Habu-
mugisha et al. (2018) modified the Hoshi and Shiba-

zaki (1977) model by considering a dynamo model

around a magnetized neutron star, and showed that the

resulting PGF torque couples with viscous torque to

provide an enhanced spin-down torque. In this paper,

we extend the quasi-Keplerian model of Habumugisha

et al. (2018) to study the quasi-Keplerian model for a

weakly magnetized object, taking care of PGF, and

then apply the model to explain the observed spin

variations in APMSPs.

In the next section, we present the basic equations

to describe the disc’s time-independent dynamical

phenomena. In Section 3, we discus quasi-Keplerian

accretion disc micro-physics. Sections 4 and 5 are

dedicated for theoretical and numerical results

respectively, Section 6 is for discussion of torque

exerted on MSPs. Finally, in Section 7, we present the

conclusion of our findings.
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2. Basic model equations

The interaction between a star and an accretion disc is

best described by employing either spherical coordi-

nates (Elsner & Lamb 1977; Ghosh & Lamb 1978) or

cylindrical coordinates (Ghosh & Lamb 1979a, b). For

the dynamics of a quasi-Keplerian model, we consider

cylindrical polar coordinates (R; /; z) with matter

inflow assumed to lie very close to the plane z ¼ 0 and

we modify the angular velocity, X0
k as

X0
k ¼ v/=R: ð1Þ

Here v/ is the modified azimuthal velocity, which is

expressed as (Campbell 1987)

v/ ¼ n

ffiffiffiffiffiffiffiffi

GM

R

r

; ð2Þ

where G is Newton’s gravitational constant, M is the

mass of the central object and n is a quasi-Keplerian

parameter assumed to lie in the range 0\n� 2 (Hoshi

& Shibazaki 1977) and it is the range used in this

study. This inequality depicts that for a physical

meaning, n ¼ 1 Keplerian motion is regained while

for large values of n (n[[ 1) the disc is distorted and

the shape of the disc is slim (Abramowicz et al. 1988).
We consider a thin, axisymmetric ðo=o/ ¼ 0Þ, and
steady ðo=ot ¼ 0Þ, accretion disc with a non-rela-

tivistic viscous flow, i.e.,

vo=c\\1: ð3Þ

Here c is the speed of light and vo ¼ l=| is a characteristic
electromagnetic (or plasma) speed, while l and | are a

typical length and time scales. This is a fundamental

assumption of magnetohydrodynamics in a way that the

speeds are non-relativistic. Some authors have considered

models consisting of relativistic flows (e.g. Rezzolla et al.
2014;Bakala et al.2010; Petri 2013, 2014) and recently, a
general relativistic simulation was extended to APMSPs

(Parfrey & Tchekhovskoy 2017) in a bid to obtain con-

vincing explanation of high energy emissions observed in

astronomical environments. However, many other

authors working on magnetized accretion follow this

approach (e.g. Ghosh & Lamb 1978, 1979a, b; Pringle

1981; Wang 1987; Campbell 1987, 1992; Pringle 1992;

Wang 1995; Lai 1998) because it yields results that have

beenknownover time toexplainobservablephenomenon.

In this study, we used the same basic equations as in

Habumugisha et al. (2018) for conservation of mass,

momentum and energy in an accretion disc. Integrat-

ing vertically, the mass conservation yields

_M ¼ �2pR
Z þH

�H

qvR dz ¼ �2pRRvR; ð4Þ

where _M is the accretion rate, R ¼
RþH

�H q dz is the

surface density, q is the density, H is the half-disc

thickness and vR is the radial velocity. Here we note

that _M is a constant for a steady disc (Bondi 1952) and

basically depends on three parameters; R, vR and R.
Following the basic equation manipulation in

Habumugisha et al. (2018), the three components of

momentum equation are:

(i) radial component

oP
oR

¼ �R vR
ovR
oR

�
v2/
R

" #

� RGM
R2

þ BzBR

l0

� �z¼þH

z¼�H

; ð5Þ

(ii) azimuthal component

R vR
oðRv/Þ
oR

� �

¼ R
BzB/

l0

� �z¼þH

z¼�H

ð6Þ

þ 1

R

o

oR
R3ðmRÞ o

oR

v/
R

� �

� �

; ð7Þ

(iii) and vertical component

PðRÞ ¼
Z þH

�H

qGM

ðR2 þ z2Þ
3
2

dz

�
Z þH

�H

q vR
ovz
oR

þ vz
ovz
oz

� �

dz: ð8Þ

Here, BR;B/;Bz and vR; v/; vz are the radial, azimuthal

and vertical components of the magnetic field B and

velocity v respectively, P ¼
RþH
�H Pdz with P(R) as the

pressure, l0 is the permeability of free space and m is

the kinematic viscosity. The kinematic viscosity m is

expressed as (Shakura & Sunyaev 1973),

m ¼ asscsH; ð9Þ

where ass is a constant showing the strength of vis-

cosity and cs ¼ ðP=qÞ1=2 is the isothermal sound

speed.

The vertical field component, Bz (Wang 1987) and

the radial field component, BR (Lai 1998) are stated as

Bz ¼ � l
R3

; ð10Þ

and
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BR ¼ �Bz

R

vR
X0

k

� �

; ð11Þ

with l as the magnetic dipole moment of the neutron

star. There are two components of B/: the shear com-

ponent and the dynamo component. The sheared com-

ponent B/;shear is given in terms of the modified X0
k as

B/;shear ¼ �cBz 1� Xs

X0
k

� �� �

: ð12Þ

In Equation (12), Xs is the angular velocity of the star,

while cJ1 is a dimensionless parameter usually

defined as the quotient when radial distance R is

divided by the vertical velocity shear length scale

(Ghosh & Lamb 1979a). Thus, from Equations (2),

(10) and (12), we obtain

B/;shear ¼
cl
R3

1� 1

n
R

R0
co

� �3=2
" #

: ð13Þ

In this model R0
co ¼ n2=3Rco is the quasi-Keplerian

corotation radius, where Rco is the usual corotation

radius expressed as (Tessema & Torkelsson 2010)

Rco ¼
GMP2

spin

4p2

 !
1
3

¼ 1:5� 106P
2
3

spinM
1
3

1; ð14Þ

where Pspin ¼ 2p=Xs is the spin period of the star, M1

is the ratio of mass of the accretor (M) to solar mass

(M�), i.e., M1 ¼ M=M�. The component B/;dyn aris-

ing due to dynamo action, is expressed as (Tessema &

Torkelsson 2011)

B/;dyn ¼ �ðassl0cdynPðRÞÞ
1
2; ð15Þ

where � is a factor which describes the direction of the

magnetic field and cdyn ¼ B/=BR (Torkelsson 1998) is

the azimuthal pitch. As usual, cdyn signifies the rate of
recconnection and amplification of toroidal field

(Campbell 1999). In reference to the standard model,

we use the value of ass ¼ 0:01 (Shakura & Sunyaev

1973) and cdyn ¼ 10while�1� �� þ 1 (Brandenburg

et al.1995). These basic equations are not explicit in the
parameters comprising them. Therefore, we need to

identify some accretion disc micro-physics.

3. Accretion disc micro-physics

With accretion disc micro-physics, we mean such

parameters as: opacity, temperature, equation of state,

pressure and scale height. These quantities were first

used by Bardeen and Petterson (1975) in order to

understand disc alignment in the centres of active

galactic nuclei. Here the rationale of these micro-

physics is to obtain a complete structure of a quasi-

Keplerian disc and thereby explain the dynamics of

accretion driven pulsars.

3.1 Opacity and temperature

In an optically thick accretion disc, the rate at which

energy is deposited in the disc per unit area by dis-

sipative process, e.g. viscous dissipation, must be

equal to the rate at which the disc can radiate this

energy away per unit area (Pringle 1981).

The energy balance has (Frank et al. 2002)

v � fm ¼ r � Frad; ð16Þ

where fm is the viscous force and Frad is the radiative

energy flux. Thus a balance between radiative losses

and viscous dissipation gives a relation between

temperature and radial distance along the disc. For a

quasi-Keplerian disc approximation, the total dissi-

pated power per unit surface area is equal to the

radiation flux. This is the required energy equation

that can relate most of the physical quantities (refer to

Frank et al. (2002) for details of derivation for a

Keplerian case)

9

8
n2mR

GM

R3
¼ 4

3

rT4
c

s
; ð17Þ

where r is the Stefan Boltzmann constant and s is the
optical depth of the disc defined as (Shapiro &

Teukolsky 2004)

s ¼ 1

2
Rj ¼ 1

2
Rðjes þ jffÞ; ð18Þ

where j is the opacity with jes as the electron scat-

tering opacity and jff as the free–free opacity. Here

jes ¼ 0:40 cm2 g�1 and using Kramer’s law

jff ¼ j0qT�3:5
c cm2 g�1 K�3:5. The constant j0 ¼ 5�

1024 for our astronomical environment i.e. accretion

disc around magnetized neutron stars (Frank et al.
2002). Thus, from Equations (17) and (18), the tem-

perature at mid-plane of the disc can be expressed as

T4
c ¼ 27

32r
n2qHðjes þ jffÞðmRÞ

GM

R3
: ð19Þ

The temperature Tc is the typical disc interior tem-

perature that is related to the disc total pressure P
through density q at z � 0 (the temperature at the mid-

plane of the disc).
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3.2 Pressure and vertical scale height

The total pressure P of the disc material is, essentially,

the sum of thermal gas pressure (� Tc) and radiation

pressure (� T4
c ), expressed as (Shakura & Sunyaev

1973)

Pðq;TcÞ ¼ q
kBTc
�lmp

þ 4rT4
c

3c

� �

; ð20Þ

where kB is Boltzmann constant, �l is the mean

molecular weight, and mp the mass of a proton. Since

there is no flow in the vertical direction i.e. vz ¼ 0, the

vertical hydrostatic equilibrium must hold. Therefore,

the pressure at the mid-plane of the disc is obtained

from Equation (8) as

PðRÞ ¼ q
GM

R3

� �

H2: ð21Þ

Radial angular momentum transport is due to the R�
/ plane of the turbulent stress tensor (Campbell

1992). The viscous stress (force per unit area) fR/
exerted in the / direction by the fluid element at R on

neighboring elements at Rþ dR, is related to the

Maxwell stress tensor and is given as (Frank et al.
2002)

fR/ ¼ 3

4
nðmRÞ GM

R3

� �1
2

H�1: ð22Þ

According to the Shakura and Sunyaev (1973) a-pa-
rameterization, the pressure P(R) in Equation (21) is

related with stress in Equation (22) to get

fR/ ¼ assPðRÞ: ð23Þ

The density q of the gas in a quasi-Keplerian disc is

thus obtained as

q ¼ 3

4

nðmRÞ
assH3

GM

R3

� ��1
2

: ð24Þ

Equating Equations (20) and (21), yields the vertical

scale height as

H ¼ kBTc
�lmp

þ 4rT4
c

3cq

� �

1
2 R3

GM

� �

1
2

: ð25Þ

This implies that in a quasi-Keplerian model around a

fast rotator, H will have different local solutions i.e.,

outer, middle and inner regions depending on Tc.

(1) The outer and middle regions are dominated by gas

pressure, albeit the outer region has free-free

interaction while in the middle region electron

scattering is the main source of opacity, then
kBTc
�lmp

[[ 4rT4
c

3cq

� �

. Therefore from Equation (25),

the outer and middle regions have H(R) expressed
as

HOðRÞ ¼ HMðRÞ

¼ kBTc
�lmp

� �1
2 R3

GM

� �

1
2

: ð26Þ

(2) Inner region is dominated by radiation pressure

and electron scattering opacity. As a result
kBTc
�lmp

\\ 4rT4
c

3cq

� �

and

HIðRÞ ¼ 4rT4
c

3cq

� �

1
2 R3

GM

� �

1
2

: ð27Þ

It can be noted that both the outer and the middle

regions are independent of q, while in the inner region

H / ðT2
c =

ffiffiffi

q
p Þ. Accordingly the temperatures build up

for radiation pressure to overcome gas pressure in the

inner region (Shakura & Sunyaev 1973). These

Equations (26) and (27) help to get the local disc

solutions for a quasi-Keplerian model.

4. Theoretical results

In this section, we present the theoretical results for

global and local disc solutions. Of interest also is the

local pressure gradient solution.

4.1 Global and local disc solutions

On simplifying Equation (7) using Equations (10)–

(15), we get a single first order differential equation

showing rate at which material flows for a quasi-Ke-

plerian accretion disc around MSP as

ðmRÞ0 ¼
_M

6pR
� ðmRÞ

2R

� �n�1
4l2cdyn
3l0H

ðmRÞ
� �

1
2

ðGMÞ�
1
4R�9

4

� n�1 4l
2c

3l0
ðGMÞ�

1
2R�9

2 1� n�1 R

R0
co

� �3
2

" #

: ð28Þ

We notice that in Equation (28), ðmRÞ ! _M=3p as

R!1 giving a boundary condition. At this stage, it

is convenient to introduce a dimensionless rate of
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mass flow and radial length variables K and r
respectively, so that

K ¼ ðmRÞ
_M

; ð29Þ

r ¼ R

RA
: ð30Þ

Here r is a dimensionless radial coordinate and RA

is the Alfvén radius, which is a characteristic radius

at which the disc plasma is channeled along the

stellar magnetic fields (Wang 1987). RA is expressed

as

RA ¼ 2p2l4

GM _M
2
l20

 !1
7

¼ 1:4� 104M
�1

7

1
_M
�2

7

14l
4
7

16 m; ð31Þ

where _M is the rate of accretion, l16 is the stellar

magnetic dipole moment in units of 1016 T m3 and
_M14 is the accretion rate in units of 1014 kg s�1. Re-

writing Equation (28) in terms of K and r we get

K0 ¼ 1

6pr
� K
2r

� �

n

4l2cdyn
3l0H _M

K

� �

1
2

ðGMÞ�
1
4R

�5
4

A r�
9
4

� 1

n
4l2c

3l0 _M
ðGMÞ�

1
2R

�7
2

A r�
9
2

1� r
3
2

xs

n

� �� �

; ð32Þ

where K0 ¼ dK=dr and xs is a fastness parameter

expressed as (Elsner & Lamb 1977):

xs ¼ RA=Rcoð Þ
3
2

¼ 0:36M
�5

7

1
_M
�3

7

14l
6
7

16

4:8ms

Pspin

� �

; ð33Þ

where Pspin is the spin period of the central object,

measured in milliseconds (ms). The global solution

(Equation (32)) is important in this study because

some of the local structural equations and pressure

gradient force are dependent on it.

The quasi-Keplerian model of Habumugisha et al.
(2018), for a disc surrounding a magnetized neutron

star dealt with the gas dominated outer region of the

disc. It was found that the disc behavior is indistin-

guishable in the outer region irrespective of the spin

period for both Keplerian and quasi-Keplerian. This is

because the outer region is slowly rotating as com-

pared to the inner region. Therefore, it is prudent to

focus on the inner and middle regions of the disc.

In the middle region, we have gas pressure Pg 	
radiation pressure Pr but jes 	 jff and on using

Equation (29) and (30) in Equation (26) we have

HMðrÞ ¼ kB
mp�l

� �2
5 81jes

128rass

� � 1
10 GM

ðrRAÞ3

 !� 7
20

2

4

3

5

ð _MKÞ
1
5: ð34Þ

Carefully using the definitive equations (Equa-

tion (15)) for B/;dyn and Equations (17) to (24) for R,
Tc, Pc, qc and s, with Equations (29), (30) and (34),

we obtain the disc structure equations as

R ¼ 3

2ass

mp�l
kB

� �4
5 81jes

128rass

� ��1
5

GM

R3

� �1
5

ðmRÞ
3
5n

2
5: ð35Þ

The mid-plane temperature is obtained as

Tc ¼
mp�l
kB

� �1
5 81jes

128rass

� �1
5

GM

R3

� � 3
10

ðmRÞ
2
5n

3
5: ð36Þ

The pressure, density and the optical depth of the disc

are respectively,

P ¼ 3

4ass

mp�l
kB

� �7
5 81jes

128rass

� �� 1
10

GM

R3

� �17
20

ðmRÞ
4
5n

7
10; ð37Þ

q ¼ 3

4ass

mp�l
kB

� �6
5 81jes

128rass

� �� 3
10

GM

R3

� �11
20

ðmRÞ
2
5n

1
10; ð38Þ

s ¼ 3

ass

mp�l
kB

� �4
5 81jes

128rass

� ��1
5

GM

R3

� �1
5

ðmRÞ
3
5n

2
5: ð39Þ

Finally, we obtained the magnetic field generated by

the internal dynamo as
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B/;dyn ¼
3l0cdyn

4

� �1
2

�
mp�l
kB

� � 7
10 81jes

128rass

� �� 1
20

GM

R3

� �17
40

ðmRÞ
2
5n

7
10: ð40Þ

On further simplifying this set of equations and sub-

stituting for mp, kB, G, jes and r, we have

R ¼ 7:1� 105�l
4
5a

�4
5

ss M
2
7

1
_M
27
35

14l
�12

35

16

KðrÞ
3
5r�

3
5n

2
5 kgm�2; ð41Þ

Tc ¼ 1:8� 108�l
1
5a

�1
5

ss M
3
7

1
_M
23
35

14l
�18

35

16

KðrÞ
2
5r�

9
10n

3
5 K; ð42Þ

Pc ¼ 3:1� 1015�l
2
5a

� 9
10

ss M
17
14

1
_M
107
70

14l
�51

35

16

KðrÞ
4
5r�

51
20n

7
10 Nm�2; ð43Þ

qc ¼ 2:1� 103�l
6
5a

� 7
10

ss M
11
14

1
_M
61
70

14l
�33

35

16

KðrÞ
2
5r�

33
20n

1
10 kgm�3; ð44Þ

s ¼ 1:4� 104�l
13
10a

�4
5

ss M
2
7

1
_M

8
35

14l
12
35

16

KðrÞ
3
5r�

3
5n

2
5; ð45Þ

B/;dyn ¼ 6:2� 104�c
1
2

dyn�l
1
5a

1
20
ssM

17
28

1
_M
107
140

14l
�51

70

16

KðrÞ
2
5r�

51
40n

7
10 T: ð46Þ

Similarly for the inner region we have Pg 	
Pr butjes 	 jff with

HIðRÞ ¼ 9jes
8c

� �

ð _MKÞ; ð47Þ

and the disc structure equations are

R ¼ 94a�1
ss M

�5
7

1
_M
�10

7

14 l
6
7

16

KðrÞ�1r
3
2n�3 kgm�2; ð48Þ

Tc ¼ 1:9� 107a
�1

4
ss M

5
28

1
_M

3
28

14l
� 3

14

16

r�
3
8n�

1
4 K; ð49Þ

Pc ¼ 3:6� 1013a�1
ss M

5
7

1
_M
3
7

14l
�6

7

16

r�
3
2n�1 Nm�2; ð50Þ

qc ¼ 3:1� 10�3a�1
ss M

�5
7

1
_M
�17

7

14 l
6
7

16

KðrÞ�2r
3
2n�5 kgm�3; ð51Þ

s ¼ 1:9a�1
ss M

�5
7

1
_M
�10

7

14 l
6
7

16KðrÞ
�1r

3
2n�3; ð52Þ

B/;dyn ¼ 6:7� 103�c
1
2

dyna
1
20
ssM

5
14

1

_M
3
14

14l
�3

7

16 r
�3

4n�
1
2 T: ð53Þ

Apart from the toroidal magnetic field,

B/;shear ¼ �3:7� 103cM3=7
1

_M
6=7

14

l�5=7
16 ð1� n�1xsr

3=2Þr�3 T; ð54Þ

the rest of the structural equations change as we transit

through the disc regions. However, B/;shear will only

vanish when n ¼ xs.

4.2 Pressure gradient local solutions

The effect of the surrounding fluid on the ring of the

disc is obtained by adopting the a-parametrization of

Shakura and Sunyaev (1973). Thus, considering the

dominant terms of Equation (5) without loss of gen-

erality, we can drop the term vRovR=oR to obtain

oP
oR

¼ R
v2/
R

� GM

R2

 !

: ð55Þ

Using Equation (2) and the pressure-density relation

in Equation (24) in Equation (55), it is easy to show

that

oP
oR

¼ 3

2
ðn2 � 1Þa�1

ss ðmRÞðGMÞ
1
2R�1

2H�2: ð56Þ

Equation (56) is the pressure gradient equation

expressed in terms of K. For n ¼ 1, the PGF is

zero, a state which corresponds to the Keplerian

fashion. As the disc deviates from this state, the

azimuthal velocity is faster and the disc material

becomes more dense for n[ 1. A reverse situation

occurs when n\1 (slower and less dense). Further,

because of H in Equation (56), it indicates that there

are separate local solutions for a disc around a

MSP. Consequently, using Equations (26) and (27)

in Equation (56), the pressure gradient in the middle

region is

oP
oR

	

	

	

	

middle

¼ 2:2� 1022ðn2 � 1ÞKðrÞ
3
5r�

21
10; ð57Þ

and the inner region is
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oP
oR

	

	

	

	

inner

¼ 5:6� 1015ðn2 � 1ÞKðrÞ�1r�
1
2: ð58Þ

Comparing Equations (57) and (58), pressure gradient

(oP=oR), is / Kþ0:6 in the middle region while

oP=oR / K�1 in the inner region. This implies that

for a given _M (flow rate), PGF grows faster in the

inner region than in the middle region. The inner

region is known to be hot, where characteristic

emissions originate from and the observed X-ray flux

changes can be attributed to PGF influence. This

layout gives a basis to find the numerical solution of a

quasi-Keplerian accretion disc.

5. Numerical results

In a quasi-Keplerian model for a disc around MSP, we

consider a neutron star with a mass M ¼ 1:4M� and a

magnetic moment of 1016 T m3 which is accreting at

an average flow rate of 1014 kg s�1 (Shapiro &

Teukolsky 2004). Other parameters considered are

ass ¼ 0:01, c ¼ 1 (Shakura & Sunyaev 1973), cdyn ¼
10 (Brandenburg et al. 1995) and �0:1� �� þ 0:1, a
factor which describes the direction of the magnetic

field (Tessema & Torkelsson 2011). Further we con-

sider a spin period of 4.8 milliseconds and vary the

quasi-Keplerian parameters n from 0:1 to 1:5 as justi-

fied in x2. This allows for a heuristic analysis of quasi-
Keplerian disc dynamics.

The disc is expected to show transition from the

outer region to the middle region at a point where

electron scattering is equal to the free–free scattering

ðjes ¼ jffÞ and middle to inner when gas pressure is

balanced by radiation pressure ðPg ¼ PrÞ. Using the

boundary condition that K ’ 1=3p as r ! 1, the

transition radius from the middle region to the inner

region is given by

rMI ¼ 13�l
8
21M

10
21

1
_M
22
21

14l
�4

7

16 ; ð59Þ

while the transition radius from the outer region to the

middle region is given by

rOM ¼ 49�l�
1
3M

10
21

1
_M
20
21

14l
�4

7

16 : ð60Þ

In Table 1, we present the different accretion rates

(1:2� 1012 kg s�1 for outer, 1:2� 1013 kg s�1 for

middle, 1:5� 1014 kg s�1 for inner) (Shakura &

Sunyaev 1973) and corresponding Alfvén radius,

fastness parameter and transition radii (outer-middle

(rOM) and middle-inner (rMI)).

The numerical solution for Equation (32) with

� ¼ 0:1, 0.05, 0, -0.05 and -0.1 has two kinds of

solutions at the inner edge of the accretion disc,

depending on the kind of inflow. These cases are: case

D and case V. The former occurs when

K ¼ 0; ð61Þ

i.e., the curve crosses the r-axis. In this case we see

that the corresponding q and T �! 0 at the inner

edge. In the latter case, (case V)

K 6¼ 0 or
d

dr
r3K

dX
dr

� �

¼ 0; ð62Þ

i.e., when the curve does not cross the r-axis. The dif-
ference between these boundary conditions is that for

case D to arise, viscosity does not contribute to driving

the accretion (Shakura & Sunyaev 1973) while in case

V, the inflow at the inner edge of the accretion disc is

driven completely by the transfer of excess angular

momentum from the accreting matter to the stellar

magnetic field (Wang 1995). Basing on this compar-

ison, we discuss separate numerical local solutions and

effect of pressure gradient force in the next sub sections.

5.1 Inner region ð1\rMIÞ

In Figure 1, we present graphs of KðrÞ and d=drðK
ffiffi

r
p

Þ
for a choice of n ¼ 0:8, 1.0 and 1.2. It can be observed
that in Figure 1(c), when n ¼ 1 (Keplerian motion), the

solution is similar to that of TT11 where we have only

case V ðK 6¼ 0Þ solution. This can be verified using

Figure 1(d) where d=drðK
ffiffi

r
p

Þ is plotted against r. But
when we consider the quasi-Keplerian case, it is found

that when n[ 1 in Figure 1(e), we also obtain all our

solutions as caseV (confirmwith Figure 1(f)). Only one

case D solution (see Figure 1(a)) appears when n\1.

Still from Figure 1, we observe an interesting display

where the position of the inner edge is shifted further

inwards when n[ 1 (Figure 1(e)) and outwards when

n\1 (Figure 1(a)). Besides the parameter n, in the inner

Table 1. Accretion rates and corresponding Alfvén

radius, fastness parameter and transition radii (outer-middle

(rOM) and middle-inner (rMI)).

_M14 RA (m) xs rOM (m) rMI (m)

0.12 (Middle) 2:4� 104 0.36 9.0 –

1.50 (Inner) 1:2� 104 0.12 100 12
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region, the dynamoparameter (�) has a significant effect
in determining the location of the inner edge of the disc

as it was the case for the TT11 model. The dynamo

generatedmagnetic field by the dynamo are shownwith

� ¼ �0:1 dotted, � ¼ �0:05 dot-dashed, � ¼ 0 black

solid, � ¼ 0:05 long-dashed and � ¼ 0:1 dashed.

According to Naso et al. (2013), the complex dynamics

of the inner region converts matter into an intense hot,

completely ionised plasma, that interacts with the weak

magnetic field to produce spinning up of the MSPs.

5.2 Middle region (rMI\1\rOM)

The middle region is characterized by gas pressure,

being greater than radiation pressure, but opacity is

due to electron scattering (refer to TT11). Assuming a

flow rate of _M ¼ 1:2� 1013 kg s�1 (Shapiro &

Teukolsky 2004), we obtain the numerical solutions in

Figure 2 for the middle region using Equation (32) for

dynamo parameters � ¼ 0:1; 0:05; 0; �0:05 and
�0:1. From Figure 2(c), we have one case D solution

for n ¼ 1:0. For clarity, see Figure 2(d) where

d=drðK
ffiffi

r
p

Þ is plotted against r. Another case D

solution is obtained for n ¼ 1:2 (refer to Figure 2(e)).

This result corresponds to the dynamo parameter

� ¼ �0:1. When n ¼ 0:8, the solution of Equa-

tion (32) provides two case D solutions (see

Figure 2(a)). This has a consequence on the total

torque for this region as the viscous torque, Nvisc

vanishes (Nvisc ¼ 0) for every case D. This case gives

a chance for pressure gradient torque to have a

Figure 1. Variation of dimensionless rate of mass flow, KðrÞ and d/drð
ffiffi

r
p

KÞ with radial distance for a neutron star within
the inner region. The magnetic field generated by the dynamo are shown as follows: � ¼ �0:1 – dotted, � ¼ �0:05 – dot-

dashed, � ¼ 0 – black solid, � ¼ 0:05 – long-dashed and � ¼ 0:1 – dashed.
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significant contribution to the total torque exerted on a

MSP (Habumugisha et al. 2018).

5.3 Effect of pressure gradient force

To analyse the effect of PGF, we plot the solution of

local PGF (oP=oR) using Equations (57) and (58). For
middle region, we obtained Figures 3(a) and (b) while

for inner region we have Figures 3(c) and (d). In

general, for n[ 1, we have a positive PGF (see Fig-

ures 3(b) and (d)) and a negative PGF when the azi-

muthal quasi-Keplerian coefficient n is \1 (see

Figures 3(a) and (c)). The pressure gradient in the

inner region is greater than that in the middle region

and so are the corresponding torques. Details of var-

ious torques exerted on MSPs are discussed in

Section 6.

6. Torques on MSP in a quasi-Keplerian disc

To obtain the torque acting on a MSP, we use a simple

approach,

NðRÞ ¼
Z Rout

Ri

2pRFðRÞdRNm; ð63Þ

Figure 2. Variation of dimensionless rate of mass flow, KðrÞ and d/drð
ffiffi

r
p

KÞ with radial distance for a neutron star within
the middle region. The magnetic field generated by the dynamo are shown as follows: � ¼ �0:1 – dotted, � ¼ �0:05 – dot-

dashed, � ¼ 0 – black solid, � ¼ 0:05 – long-dashed and � ¼ 0:1 – dashed.

   24 Page 10 of 14 J. Astrophys. Astr.           (2020) 41:24 



where N(R) is the torque and F(R) is the force. Using

Equation (55) the torque contribution from the pres-

sure gradient force is

Npgf ¼ �2p
Z Rout

Ri

Rðn2 � 1ÞGM
R

dR; ð64Þ

while the other torques are as follows:

(i) the material torque

NadvðRiÞ ¼ n _M
ffiffiffiffiffiffiffiffiffiffiffiffi

GMRi

p

Nm; ð65Þ

(ii) the viscous torque

NviscðRiÞ ¼ �3pnðmRÞðGMRiÞ
1
2 Nm; ð66Þ

(iii) the dynamo torque

NdynðRiÞ ¼
Z Rout

Ri

4p
l0

½BzðB/;dynÞ
R2 dRNm; ð67Þ

(iv) and the shear component of the magnetic field

yields a torque

NshearðRiÞ ¼
Z Rout

Ri

4p
l0

½BzðB/;shearÞ
R2 dRNm:

ð68Þ

Equations (65) and (66) represents the material

and viscous torques on the neutron star respec-

tively, while Equations (67) and (68) are the

magnetic torques. Here we note that both Nadv and

Nvisc are directly proportional to the term n _M;
_M ¼ mR=K. Thus a change in n or _M will affect

the magnitude of the torque. Infact, the resulting

PGF torque couples with viscous torque (when

n\1) to provide a spin-down torque and a spin-

up torque (when n[ 1) (Habumugisha et al.

2018).

We can further simplify Equations (64)–(68) to

obtain the local torque solutions as

NadvI ¼ 2:4� 1026nM
3
7

1
_M
6
7

14l
2
7

16Kr
1
2

i j
rMI

rA
; ð69Þ

NadvM ¼ 1:9� 1025nM
3
7

1
_M
6
7

14l
2
7

16Kr
1
2

i j
rOM
rMI

; ð70Þ

NviscI ¼ �2:3� 1027nM
3
7

1
_M
6
7

14l
2
7

16Kr
1
2

i j
rOM
rA

; ð71Þ

NviscM ¼ �1:8� 1026nM
3
7

1
_M
6
7

14l
2
7

16Kr
1
2

i j
rOM
rMI

; ð72Þ

Nshear ¼ 1:2� 1026M
3
7

1
_M
6
7

14l
2
7

16 1� 2
xs

n
r
3
2

i

� �

; ð73Þ

Figure 3. Pressure gradient force (oP=oR) as a function of radial distance for a neutron star within the middle region (top
panel) and inner region (bottom panel). The magnetic field generated by the dynamo are shown as follows: � ¼ �0:1 –

dotted, � ¼ �0:05 – dot-dashed, � ¼ 0 – black solid, � ¼ 0:05 – long-dashed and � ¼ 0:1 – dashed.
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NpgfI ¼ 4:2� 1022ðn2 � 1Þa�1
ss M
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i jrOMrA
; ð74Þ
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NdynI ¼ 9:6� 1026�c
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The total torque exerted on the neutron star NT can be

expressed in terms of the inner edge position rin as

NTðrinÞ ¼ Npgf þ Nadv þ Nvisc þ Ndyn

þ Nshear Nm: ð78Þ

The values of individual terms in Equation (78) are

shown in Table 2.

6.1 Comparison with observed results

The spin variation is related to torque by

_m13 ¼
NT

2pI38
Hz s�1; ð79Þ

where _m13 is the spin derivative in units of 10�13 Hz

s�1 and I38 is the moment of inertia of the neutron star

measured in 1038 kg m2. Several accretion driven

pulsars have been observed with changing spin fre-

quencies e.g. SAX J1808.4-3658 (Chakrabarty &

Morgan 1998) and XTE J1814-338 (Haskell &

Patruno 2011). Specifically, SAX J1808.4-3658, was

reported by Bildsten et al. (2006) to have spin varia-

tions, _m13 between �7:6� 10�14 and 4:4� 10�13 Hz

s�1 while Hartman et al. (2008) noted _m13.2:5�
10�14 Hz s�1. Other objects include among others:

XTE J1751-305 which has a frequency of 435 Hz and

a pulse-frequency derivative of \3� 10�13 Hz s�1

while XTE J0929-314 has a frequency of 185 Hz and

a pulse-frequency derivative of ð�9:2� 0:4Þ � 10�14

Hz s�1 (see Wijnands (2004) for a review of these

objects). Using Equation (79), it is interesting to note

that these spin-up/down frequencies for MSPs are

comparable to our model values in Table 2. We

therefore argue that the observed spin variations are

catered for in a quasi-Keplerian model when the disc

is transiting to and from Keplerian flow.

7. Conclusion

We have modeled the structure of a quasi-Keplerian

dynamo powered accretion disc surrounding a MSP.

Our model shows that the PGF arising from the

deviation of the disc from the Keplerian motion has

significant contribution to the net torque exerted on

the MSP. The resulting torque due to PGF was found

to couple to the viscous torque (when n\1) to provide

a spin-down torque and a spin-up torque (when n[ 1)

by coupling with the advective torque. The total tor-

que shows change of sign (reversals) that result in spin

variations of the same order as those observed in MSP

(e.g. see the paper of Bildsten et al. (2006) or Hart-
man et al. (2008) for details on MSPs). We thus

believe that the PGF can trigger tilting of an accretion

disc though in a different way from how viscous tor-

ques were found by Pringle (1992) for a steady Kep-

lerian disc. This study therefore, provides a

contribution to the theoretical understanding of the

dynamics of quasi-Keplerian discs surrounding mag-

netized neutron stars.
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