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Abstract

The growth rate of bump on tail instability propagating in unmagnetized plasma has been derived.
The dispersion relation has been characterized for (r, g) distribution function with spectral indices r
and g which ultimately contributes towards tails and shoulder of distribution function. The growth
rate of the bump on tail instability has been estimated numerically for different ratios of temperature
and number density using solar wind data and also by varying values of indices rand q . The higher
value of g play the role towards decreasing the growth rate where the instability has the higher value
when the number density of the superthermal electrons in the bump is higher and the temperature is
low. The maximum growth rate increases with the increase in number density of electrons and
decreases with the increasing temperature in the bump.

1. Introduction

‘Bump on tail’ is a microinstability generated when an electron beam is injected into plasma, as a consequence of
which the particle velocity distribution function gets a ‘bump’ on its ‘tail’. Initially Filbert et al [1], and
Papadopoulos et al [2] discussed this idea but both were unable to explain the stabilization of the beam at low
energies. Later, Freund et al [3] discussed the more general schemes of beam stabilization in the presence of
superthermal background solar wind electrons which is more relevant to the actual circumstances of the
foreshock.

A modified concept of bump-on-tail instability saturation was proposed by Klimas et al [4] in the Earth’s
foreshock regime. With the help of numerical simulation and quasi-linear analysis they argued that the Filbert’s
mechanism is also operative during the evolution of the bump-on-tail instability. The saturated plasma state
represents a balance between its creation mechanism and velocity space diffusion and cannot determined by
velocity space diffusion alone.

Fitzenreiter et al [5] derived three-dimensional measurements of velocity distribution of electrons in the 7eV
to 500 eV range for the electron foreshock. Schmit et al [6] discussed the bump on tail instability through
particle-in-cell simulations. Their analysis includes the evolution of the bump-on-tail instability for plasma
subject to one-dimensional mechanical compression.

Valentini et al [7] used the toy model for resonant wave particle interaction in an unmagnetized plasma.
They captured the linear growth of bump on tail instability and particle trapping effects which produce the
saturation of the instability and drive the non linear phase of wave particle interaction.

Maxwellian distribution is the natural distribution in case of thermodynamic equilibrium. However
observed distribution functions in space and laboratory plasmas, show a significant deviation from the
Maxwellian distribution function. Data analysis prove that natural space environment such as chromosphere,
solar wind, solar corona, magnetosheath, magnetosphere and astrophysical plasma contains particles which
exhibit high energy tails that lead to non-Maxwellian distributions.
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The electron velocity distribution function in space is observed to be non-Maxwellian and that is widely
confirmed by the data collected from spacecraft [8]. Such non-Maxwellian distributions can be responsible for a
lot of different characteristics of plasma waves and instabilities. The increase in energy leads to the formation of
high energy tails which can be more precisely described by Lorentzian Kappa () distribution function or may be
expressed in power law form as generalized (r, q) distribution function. Such kind of deviations occur when
plasma is moderately collisional. Lorentzian Kappa distribution is a convenient mathematical choice to study
weakly collisional plasmas [9, 10]. The general (r, q) distribution function is given by [11-13],
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where r and q are the spectral indices and W is the thermal speed related to particle termal velocity emerges from
the definition of the temperature for distribution function. f(r, ) has been normalized such that

ff(r, Qdv = 1.
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I" is the normal Gamma Function.

In figure 1, there is a comparison of normalized (r, q) distribution function and Maxwellian distribution
function. The dashed line shows the Maxwellian distribution function and colored lines show the behavior of (,
q) distribution function. The (r, q) distribution reduces to Maxwellian for ¢ — coand r = 0. If the value of g
increases taking r fixed as in figure 1(a), the contribution of high energy particles increases with the shrinkage of
the shoulder of the distribution function [14, 11, 12, 15]. On the other hand, If the value of r increases, taking
the value of g fixed, the contribution of high energy particles is reduced and the shoulder in the distribution
function is broadened. It is also observed that the contribution of high energy particles increases with increasing
number density of electrons in the unstable region with the fact that temperature of the electrons is low. The (r,
q) distribution function is the generalized form of kappa distribution function and reduces to kappa distribution
function with r = 0 limit. This distribution function is common in both natural and laboratory plasmasi.e.,
shock waves, solar wind, magnetotails etc. Data analysis for solar wind plasma suggests the superiority of (r, q)
distribution function over the simple kappa distribution function [16, 17].

According to the problem, the modified one dimensional (r, q) velocity distribution function for electrons
can take the form with bump in it,

. %1, 2 \r+1\ 4
folm) == F(q)(lq D 1 [1 +— 1(%) ]
20l (q - )1+ )0 4 ;
m L(q)(q — Drr
1 1
e 4\112F(q - 2+27)F<1 + 2+2r>

_ 2\ +1 -9 2\ 1 -9
[[1 - ((VZ ZV”) ] ) + [1 N ((VZ +2V°) ] ] ] )
q—1 vs q—1 s

where 1, is number density of thermal region and n, is for bump region and n, = n, + n,, where T}, T, are the
temperature of the electrons of thermal and bump regions respectively, where the thermal velocities are
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Figure 1. The (a) part shows behavior of distribution function with different values of index q when index r is fixed and part (b) shows
fixed value of index q while r varies.
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The (r, q) distribution function fits with the data obtained form the AMPTE satellite for magnetosheath and
the solar wind data collected from the CLUSTER [16]. Qureshi et al [ 18] investigated the parallel propagation of
waves in general and Alfven waves in particular by using the (r, g) distribution function. The new dispersion
relation was derived and its properties were widely studied. The Landau damping of the Langmuir waves with
the reduction in the spectral indices r and q was studied in detail in hot, isotropic, unmagnetized plasma [19].
Linear stability analysis of (r, q) distribution with Whistler wave and its comparison with CLUSTER data leads to
the good agreement both quantitatively and qualitatively [ 14]. Zaheer et al [11] presented a realistic picture of
perpendicularly propagating electromagnetic modes i.e, O-mode and X-mode in strongly magnetized hot
plasma by using (r, ) distribution function. Zaheer et al[12] also calculated the Weibel instability in
unmagnetized plasma by non-Maxwellian distribution function. The solar wind electrons were modeled by
Zaheer and Yoon by using (r, q) distribution near 1 AU[13]. Hashemzadah [20] has used the g-nonextinsive
distributive function for calculation of eigenmodes of filamentation instability. In his manuscript, he calculated
the growth rate of filamenattion instability dependence on electron velocity and q-nonextensive parameter.
According to [20], both factors play the same role to deal with growth rate. As we are dealing with the generalized
(r, @) distribution function and studied the dependence of growth rate on r and q indices seperatly. So in both
caseas, we obsreved the growth rate is maximum at higher r values and decreases with the increase in the value
ofq.

In section 1, we have introduced the modified (r, q) distribution keeping in mind that it better fits with the
solar wind data especially when there is a presence of high energy tails and indication of formation of shoulders

U, =

3
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and bumps in the distribution function. In section 2, by using kinetic theory the dispersion relation of the bump
on tail instability has been derived. Relying on that dispersion relation we have further calculated the analytical
expressions for growth rate and the maximum growth rate of the instability. In section 3, we have discussed the
results based on the numerical analysis from the solar wind data.

2. Mathematical model

In this manuscript, a beam of high energy electrons of velocity v, has been introduced in the z-direction, in (r, q)
velocity distribution. The electron beam produces a relative velocity (v, — ;) and (v, + 1) in the positive as
well as in negative z-direction respectively. The ions being massive are assumed to form a fixed background. The
distribution is considered to be symmetric in order to neglect the effects of current as this is a microinstability
and falls in the category of electrostatic instability [ 15]. The plasma oscillations are characterized by D(k, w) = 0,
where the frequency consists of real as well as imaginary part. If w = w, + iw;, then w, is the real frequency and
w; is the imaginary part of frequency. So in D(k, w)= D, (k, w,) + iD;(k, w;,), thereal part of D, (k, w,) tellsus
about the behavior of the plasma to electric field which is generated in the plasma wave. While the damping or
growth rate is characterized by w; which explains that the particles are in resonance with disturbance. The real
frequency w;, in isotropic plasma can be written as [21]

w2 50 ‘?feo
T Ov _
Dk, w,) = 1 szwrjgw 0 3)
w? 8f
D= ——L| =20 4
k? ( ov )V “p @

As we have taken ions form neutralizing background, the plasma frequency will be for electrons only given

1
as w.., — 4men, \2
pe — M,

The imaginary component of D i.e., D;is used to compute the growth or damping rates
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By taking derivative of equation (2) and substituting into equation (3), we get expression for electron
plasmawave . e., Langmuir wave
2 2
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It must be clear that w,, is electron plasma frequency while wy, is frequency of electrons in thermal region.
2
And w?,l = 47%@_ Making D, = 0,we can reproduce the standard results as w? = wf,l(l + 3k? )\%)1 ). Where
)\%)1 =T Ttis quite clear from the above equation that real frequency of the langmuir wave has not changed

4mnye?”
due to the presence of bump in the velocity distribution function. It is also noted that the real frequency is same

as when a single bump is present in Maxwellian plasma. The real frequency of Langmuir waves does not change
in the presence of superthermal electrons.

The imaginary part of distribution function by assuming the same conditions as for the real part turns to be
The T(q + D+ (g — D 3
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Differentiating equation (7), we get
2 4
oD, pr] 232 Y
— = + 12k; \p, — 9
Ow, w? 2P S ®

r

By substituting D;and 0D, /Ow, from equation (9) and equation (10) into equation (5), the following growth
rate is obtained under approximations n;, > m,, T, > T,and k, A\p, < 1
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The first part of the equation tells about the contribution of positive part of tail of distribution function. The
second term of right hand side shows the Landau damping of the wave. The negative tail of the distribution has
been ignored because of the significance of the position of the observer in instability criteria. The growth rate of
‘bump on tail” instability for the (r, ) distribution function and is maximum when r = 0, turns out to be

instability condition
/T2 ko, (11)
q + 1

which under approximation k, Ap, < 1leadsto k, ~—~ ” ~. Under these approximations wj; can be used in place
of w,. Considering all these conditions the maximum growth rate becomes

w JTw '+ 1 [nz T [2q—3 ;ﬂev‘,zk})\3 (q + Z)Iq
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The above equation clearly depends upon q and other plasma parameters. Therefore, it comes to the
understanding that the instability gains maximum value at k,

particle velocity in the bump.

‘kvn

%%, and propagates in parallel direction to the
0
In case of r = 1, the growth rate is maximum under the following instability condition
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. 3r(qz)2(z)7 \/Zkzm 13)
-

4

‘ k. v,

Wr

The maximum growth rate will then be
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Figure 2. The Growth rate vs q (spectral index) for n; /n, = 5 x 105, 7 x 10°, 10°and T, /T, = 500 wherer = 0.

The growth rate will be maximum when = 2, where we obtain the following instability condition

(e = )rG) [T ko,
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The maximum growth rate will then be
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The above equations clearly show the dependence of maximum growth rate at different values of rand g and
other plasma parameters. Also the unstable wave propagates in z-direction which is parallel to velocity of particle
in bump also present in the distribution.

3. Numerical analysis

We have used the values of number density and temperature n, = 8.7 x 10n3and T, = 2 x 10°K
respectively for analysis [22, 23], which satisfies the solar wind regime. Bukhari et al [24] discussed the kinetic
instability in the same region i.e; solar wind, where the temperature and number density is same as in the present
manuscript. That is a good evidence of presence of kinetic instabilities in solar wind regime. The number density
and temperature of the particles in the bump of the tail are chosen under the limiting conditions as used in the
calculationsi.e. 1, >> 1y, m T, > nym, v, and the value of k, \p; is considered to be 107°. The velocity
distribution function of such particles is considered to be quasilinear treated by generalized Maxwellian function
with mean thermal velocities whereas non maxwellian tails are treated by Lorentzain Kappa distribution
function due to high energy tails and large thermal velocities of electrons towards tails. Such deviations from
normal behavior have already been identified in literature with Kappa distribution function [25]. The real
frequency w, is independent of the index (r) as observed by equation (14). However, the growth rate and its
maximum value depends upon q and it is clearly observed by equations (13), (15) and 16. In the limitof r = 0
and g = k + 1the(r, q) distribution approaches to Lorentzian Kappa distribution [25] whileat r = 0 and

Kk — 00, this distribution approaches to Maxwellian distribution function [15]. We have plotted the growth rate
of instability versus g giving different values to r. The plots of w; may /wp1 Versus g are plotted in figures 2, 3 and 4
for different n, /n, ratios against fixed T}/ T, considering r = 0, 1, 2. figure 2 showsr = 0, figure 3 showsr = 1
and figure 4 reveals the truth forr = 2.
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q (spectral index)

Figure 3. The Growth rate vs q (spectral index)for n; /n, = 5 x 10°, 7 x 10°, 10°and T; /T, = 500 wherer = 1.
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Figure 4. The Growth rate vs q (spectral index) for n; /n, = 5 x 10°, 7 x 10°, 10°and T; /T, = 500 where r = 2.
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Figure 5. The Growth rate vs q (spectral index) for T} /T, = 800, 600, 400 and 1, /n, = 10° wherer = 0.

Similarly, figures 5, 6 and 7 are plotted for wj max /wp1 versus g for different T, / T, ratios against fixed 1, /n,

considering r = 0, 1, 2, respectively. As the value of g increases, the growth rate decreases and starts

approaching the value attained by Maxwellian distribution function [21].
Figures 2, 3 and 4 reveals that the growth rate is greater for small value of density ratio n, /n, for fixed T} /T,
forr = 0, 1, 2 respectively. Figures 5, 6 and 7 represents that growth rate is higher at high value of T} / T at fixed

ny/n,forr = 0,1, 2.
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Figure 6. The Growth rate vs q (spectral index) for T; /T, = 800, 600, 400 and nn;/n, = 10° where r = 1.
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Figure 7. The Growth rate vs q (spectral index) for T} /T, = 800, 600, 400 and 1, /1, = 10° wherer = 2.

The spectral indices rand g generally represents the shoulder and the high energy tail of the distribution
function respectively. It is evident from the figures 2 and 5 that for r = 0 and larger values of q the (1, q)
distribution approaches the Maxwellian behavior. In both figures the ratios 1, /1, and T} / T,are kept constant
alternatively.

When the value of ris increased i.e; r = 1, keeping q fixed in figures 3 and 6, with ratios n;/n, and Ty /T,
alternatively kept constant, the shoulder of the distribution function begins to form which represents the flat
part of the distribution. The maximum growth rate of instability increases at larger r and smaller g representing
the presence of larger number of superthermal electrons. But as the value of g increases, the growth rate of
instability decreases due to decrease in the number of superthermal electrons. Consequently, energy transfer
from the electrons to the wave decreases.

When the value of r is further increased i.e; r = 2, keeping g fixed in figures 4 and 7, the flat portion becomes
more prominent. Again, n,/n, and T}/ T, are kept constant respectively. This flattening of the tail also indicates
that the lager number of particles are receiving energy from the wave as compared to particles giving energy to
the wave thus leading to the decrease in the growth rate of instability at larger value of g. However, by increasing r
with fixed value of g the maximum growth rate increases.

Figures 2,3 and 4 atr = 0,1 and 2 against fixed ratio of number density emphasizes the maximum growth
rate of the instability for high value of the number density of the electrons in the bump. Similarly, figures 5, 6 and
7atr = 0,1 and 2 against fixed ratio of temperature shows that the maximum growth rate of instability is lower
when the temperature of the electrons in the bump is low.

4. Conclusion

In the present manuscript, we ensured a complete and systematic analysis of bump on tail instability by
analyzing the dispersion relation of Langmuir waves characterized by (r, q) velocity distribution function with

8
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spectral indices rand q. It is observed that the growth rate is maximum at higher r values which clearly indicates
the presence of larger number of electrons. It decreases with the increase in the value of g and approaches to its
Maxwellian value. The wave particle interaction becomes significant at smaller g values. At smaller values of g,
the electrons import more energy to the Langmuir wave thereby increasing the growth rate of the instability.
With the decrease in the number of electrons at higher g values, the energy transfer from particles to wave is also
decreased leading to the decrease in the growth rate of instability. With all these observations it can be concluded
that the number density and temperature plays a significant role in the growth rate of instability. The maximum
growth rate increases with increasing number density and decreases with the increasing temperature of electrons
in the bump.
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